SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile World Models
- URL: http://arxiv.org/abs/2503.01584v1
- Date: Mon, 03 Mar 2025 14:26:15 GMT
- Title: SENSEI: Semantic Exploration Guided by Foundation Models to Learn Versatile World Models
- Authors: Cansu Sancaktar, Christian Gumbsch, Andrii Zadaianchuk, Pavel Kolev, Georg Martius,
- Abstract summary: Intrinsic motivation attempts to decouple exploration from external, task-based rewards.<n>SENSEI is a framework to equip model-based RL agents with an intrinsic motivation for semantically meaningful behavior.
- Score: 22.96777963013918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration is a cornerstone of reinforcement learning (RL). Intrinsic motivation attempts to decouple exploration from external, task-based rewards. However, established approaches to intrinsic motivation that follow general principles such as information gain, often only uncover low-level interactions. In contrast, children's play suggests that they engage in meaningful high-level behavior by imitating or interacting with their caregivers. Recent work has focused on using foundation models to inject these semantic biases into exploration. However, these methods often rely on unrealistic assumptions, such as language-embedded environments or access to high-level actions. We propose SEmaNtically Sensible ExploratIon (SENSEI), a framework to equip model-based RL agents with an intrinsic motivation for semantically meaningful behavior. SENSEI distills a reward signal of interestingness from Vision Language Model (VLM) annotations, enabling an agent to predict these rewards through a world model. Using model-based RL, SENSEI trains an exploration policy that jointly maximizes semantic rewards and uncertainty. We show that in both robotic and video game-like simulations SENSEI discovers a variety of meaningful behaviors from image observations and low-level actions. SENSEI provides a general tool for learning from foundation model feedback, a crucial research direction, as VLMs become more powerful.
Related papers
- SOLD: Slot Object-Centric Latent Dynamics Models for Relational Manipulation Learning from Pixels [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamics is a novel model-based reinforcement learning algorithm.<n>It learns object-centric dynamics models in an unsupervised manner from pixel inputs.<n>We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over.
arXiv Detail & Related papers (2024-10-11T14:03:31Z) - OCALM: Object-Centric Assessment with Language Models [33.10137796492542]
We propose Object-Centric Assessment with Language Models (OCALM) to derive inherently interpretable reward functions for reinforcement learning agents.
OCALM uses the extensive world-knowledge of language models to derive reward functions focused on relational concepts.
arXiv Detail & Related papers (2024-06-24T15:57:48Z) - Curricular Subgoals for Inverse Reinforcement Learning [21.038691420095525]
Inverse Reinforcement Learning (IRL) aims to reconstruct the reward function from expert demonstrations to facilitate policy learning.
Existing IRL methods mainly focus on learning global reward functions to minimize the trajectory difference between the imitator and the expert.
We propose a novel Curricular Subgoal-based Inverse Reinforcement Learning framework, that explicitly disentangles one task with several local subgoals to guide agent imitation.
arXiv Detail & Related papers (2023-06-14T04:06:41Z) - Curious Exploration via Structured World Models Yields Zero-Shot Object
Manipulation [19.840186443344]
We propose to use structured world models to incorporate inductive biases in the control loop to achieve sample-efficient exploration.
Our method generates free-play behavior that starts to interact with objects early on and develops more complex behavior over time.
arXiv Detail & Related papers (2022-06-22T22:08:50Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Reinforcement Learning for Sparse-Reward Object-Interaction Tasks in a
First-person Simulated 3D Environment [73.9469267445146]
First-person object-interaction tasks in high-fidelity, 3D, simulated environments such as the AI2Thor pose significant sample-efficiency challenges for reinforcement learning agents.
We show that one can learn object-interaction tasks from scratch without supervision by learning an attentive object-model as an auxiliary task.
arXiv Detail & Related papers (2020-10-28T19:27:26Z) - Action and Perception as Divergence Minimization [43.75550755678525]
Action Perception Divergence is an approach for categorizing the space of possible objective functions for embodied agents.
We show a spectrum that reaches from narrow to general objectives.
These agents use perception to align their beliefs with the world and use actions to align the world with their beliefs.
arXiv Detail & Related papers (2020-09-03T16:52:46Z) - Soft Expert Reward Learning for Vision-and-Language Navigation [94.86954695912125]
Vision-and-Language Navigation (VLN) requires an agent to find a specified spot in an unseen environment by following natural language instructions.
We introduce a Soft Expert Reward Learning (SERL) model to overcome the reward engineering designing and generalisation problems of the VLN task.
arXiv Detail & Related papers (2020-07-21T14:17:36Z) - Learning intuitive physics and one-shot imitation using
state-action-prediction self-organizing maps [0.0]
Humans learn by exploration and imitation, build causal models of the world, and use both to flexibly solve new tasks.
We suggest a simple but effective unsupervised model which develops such characteristics.
We demonstrate its performance on a set of several related, but different one-shot imitation tasks, which the agent flexibly solves in an active inference style.
arXiv Detail & Related papers (2020-07-03T12:29:11Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
In reinforcement learning, an agent learns to reach a set of goals by means of an external reward signal.
In the natural world, intelligent organisms learn from internal drives, bypassing the need for external signals.
We propose to formulate an intrinsic objective as the mutual information between the goal states and the controllable states.
arXiv Detail & Related papers (2020-02-05T19:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.