The Role of Deep Learning in Financial Asset Management: A Systematic Review
- URL: http://arxiv.org/abs/2503.01591v1
- Date: Mon, 03 Mar 2025 14:29:13 GMT
- Title: The Role of Deep Learning in Financial Asset Management: A Systematic Review
- Authors: Pedro Reis, Ana Paula Serra, João Gama,
- Abstract summary: This study focuses on identifying emerging trends, such as the integration of explainable artificial intelligence (XAI) and deep reinforcement learning (DRL)<n>We use the Scopus database to select the most relevant articles published from 2018 to 2023.<n>The inclusion criteria encompassed articles that explicitly apply deep learning models within financial asset management.
- Score: 1.8775413720750922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review systematically examines deep learning applications in financial asset management. Unlike prior reviews, this study focuses on identifying emerging trends, such as the integration of explainable artificial intelligence (XAI) and deep reinforcement learning (DRL), and their transformative potential. It highlights new developments, including hybrid models (e.g., transformer-based architectures) and the growing use of alternative data sources such as ESG indicators and sentiment analysis. These advancements challenge traditional financial paradigms and set the stage for a deeper understanding of the evolving landscape. We use the Scopus database to select the most relevant articles published from 2018 to 2023. The inclusion criteria encompassed articles that explicitly apply deep learning models within financial asset management. We excluded studies focused on physical assets. This review also outlines our methodology for evaluating the relevance and impact of the included studies, including data sources and analytical methods. Our search identified 934 articles, with 612 meeting the inclusion criteria based on their focus and methodology. The synthesis of results from these articles provides insights into the effectiveness of deep learning models in improving portfolio performance and price forecasting accuracy. The review highlights the broad applicability and potential enhancements deep learning offers to financial asset management. Despite some limitations due to the scope of model application and variation in methodological rigour, the overall evidence supports deep learning as a valuable tool in this field. Our systematic review underscores the progressive integration of deep learning in financial asset management, suggesting a trajectory towards more sophisticated and impactful applications.
Related papers
- How do Large Language Models Understand Relevance? A Mechanistic Interpretability Perspective [64.00022624183781]
Large language models (LLMs) can assess relevance and support information retrieval (IR) tasks.
We investigate how different LLM modules contribute to relevance judgment through the lens of mechanistic interpretability.
arXiv Detail & Related papers (2025-04-10T16:14:55Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Advanced Deep Learning Techniques for Analyzing Earnings Call Transcripts: Methodologies and Applications [0.0]
The objective is to investigate how Natural Language Processing can be leveraged to extract sentiment from large-scale financial transcripts.<n>We examine the strengths and limitations of each model in the context of financial sentiment analysis.<n>Through rigorous experimentation, we evaluate their performance using key metrics, including accuracy, precision, recall, and F1-score.
arXiv Detail & Related papers (2025-02-27T00:28:43Z) - Visualizing Machine Learning Models for Enhanced Financial Decision-Making and Risk Management [0.0]
This study emphasizes how crucial it is to visualize machine learning models, especially for the banking industry, in order to improve interpretability and support predictions.
Visual tools enable performance improvements and support the creation of innovative financial models.
arXiv Detail & Related papers (2025-02-20T22:10:02Z) - Year-over-Year Developments in Financial Fraud Detection via Deep Learning: A Systematic Literature Review [3.57129631984007]
This paper systematically reviews advancements in deep learning (DL) techniques for financial fraud detection.<n>The review highlights the effectiveness of various deep learning models across domains such as credit card transactions, insurance claims, and financial statement audits.<n>The study emphasizes challenges such as imbalanced datasets, model interpretability, and ethical considerations.
arXiv Detail & Related papers (2025-01-31T22:31:50Z) - Large Language Model for Qualitative Research -- A Systematic Mapping Study [3.302912592091359]
Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools.<n>This study systematically maps the literature on the use of LLMs for qualitative research.<n>Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes.
arXiv Detail & Related papers (2024-11-18T21:28:00Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications.
To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet.
arXiv Detail & Related papers (2024-06-24T15:55:49Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of supervised fine-tuning (SFT)<n>We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
Information Extraction seeks to derive structured information from unstructured texts.
This paper presents a review of neural approaches to low-resource IE from emphtraditional and emphLLM-based perspectives.
arXiv Detail & Related papers (2022-02-16T13:44:00Z) - Stock Embeddings: Learning Distributed Representations for Financial
Assets [11.67728795230542]
We propose a neural model for training stock embeddings, which harnesses the dynamics of historical returns data.
We describe our approach in detail and discuss a number of ways that it can be used in the financial domain.
arXiv Detail & Related papers (2022-02-14T15:39:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.