Information Extraction in Low-Resource Scenarios: Survey and Perspective
- URL: http://arxiv.org/abs/2202.08063v6
- Date: Mon, 28 Oct 2024 03:39:32 GMT
- Title: Information Extraction in Low-Resource Scenarios: Survey and Perspective
- Authors: Shumin Deng, Yubo Ma, Ningyu Zhang, Yixin Cao, Bryan Hooi,
- Abstract summary: Information Extraction seeks to derive structured information from unstructured texts.
This paper presents a review of neural approaches to low-resource IE from emphtraditional and emphLLM-based perspectives.
- Score: 56.5556523013924
- License:
- Abstract: Information Extraction (IE) seeks to derive structured information from unstructured texts, often facing challenges in low-resource scenarios due to data scarcity and unseen classes. This paper presents a review of neural approaches to low-resource IE from \emph{traditional} and \emph{LLM-based} perspectives, systematically categorizing them into a fine-grained taxonomy. Then we conduct empirical study on LLM-based methods compared with previous state-of-the-art models, and discover that (1) well-tuned LMs are still predominant; (2) tuning open-resource LLMs and ICL with GPT family is promising in general; (3) the optimal LLM-based technical solution for low-resource IE can be task-dependent. In addition, we discuss low-resource IE with LLMs, highlight promising applications, and outline potential research directions. This survey aims to foster understanding of this field, inspire new ideas, and encourage widespread applications in both academia and industry.
Related papers
- Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey [39.82566660592583]
Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation.
Their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis.
To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge.
arXiv Detail & Related papers (2025-02-15T07:43:43Z) - Leveraging the Power of LLMs: A Fine-Tuning Approach for High-Quality Aspect-Based Summarization [25.052557735932535]
Large language models (LLMs) have demonstrated the potential to revolutionize diverse tasks within natural language processing.
This paper explores the potential of fine-tuning LLMs for the aspect-based summarization task.
We evaluate the impact of fine-tuning open-source foundation LLMs, including Llama2, Mistral, Gemma and Aya, on a publicly available domain-specific aspect based summary dataset.
arXiv Detail & Related papers (2024-08-05T16:00:21Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
The article sheds light on the mechanics of in-context learning and a spectrum of fine-tuning approaches.
It explores how LLMs can be more closely aligned with human preferences through innovative reinforcement learning frameworks.
The ethical dimensions of LLM deployment are discussed, underscoring the need for mindful and responsible application.
arXiv Detail & Related papers (2024-04-18T08:01:20Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
This paper describes the DSBA submissions to the Prompting Large Language Models as Explainable Metrics shared task.
Traditional similarity-based metrics such as BLEU and ROUGE have shown to misalign with human evaluation and are ill-suited for open-ended generation tasks.
arXiv Detail & Related papers (2023-11-07T06:36:39Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
This paper proposes an AI-enabled methodological framework that combines the power of Large Language Models (LLMs) with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability.
arXiv Detail & Related papers (2023-06-15T02:52:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.