An Efficient Approach to Detecting Lung Nodules Using Swin Transformer
- URL: http://arxiv.org/abs/2503.01592v1
- Date: Mon, 03 Mar 2025 14:30:14 GMT
- Title: An Efficient Approach to Detecting Lung Nodules Using Swin Transformer
- Authors: Saeed Shakuri, Alireza Rezvanian,
- Abstract summary: Lung cancer has the highest rate of cancer-caused deaths, and early-stage diagnosis could increase the survival rate.<n>Various lung detection models exist, but many lack efficiency.<n>We propose a more efficient approach by leveraging 2D CT slices.
- Score: 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer has the highest rate of cancer-caused deaths, and early-stage diagnosis could increase the survival rate. Lung nodules are common indicators of lung cancer, making their detection crucial. Various lung nodule detection models exist, but many lack efficiency. Hence, we propose a more efficient approach by leveraging 2D CT slices, reducing computational load and complexity in training and inference. We employ the tiny version of Swin Transformer to benefit from Vision Transformers (ViT) while maintaining low computational cost. A Feature Pyramid Network is added to enhance detection, particularly for small nodules. Additionally, Transfer Learning is used to accelerate training. Our experimental results show that the proposed model outperforms state-of-the-art methods, achieving higher mAP and mAR for small nodules by 1.3% and 1.6%, respectively. Overall, our model achieves the highest mAP of 94.7% and mAR of 94.9%.
Related papers
- Advanced Lung Nodule Segmentation and Classification for Early Detection of Lung Cancer using SAM and Transfer Learning [0.0]
This study introduces an innovative approach to lung nodule segmentation by utilizing the Segment Anything Model (SAM) combined with transfer learning techniques.<n>The proposed method leverages Bounding Box prompts and a vision transformer model to enhance segmentation performance, achieving high accuracy, Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) metrics.<n>The findings demonstrate the proposed model effectiveness in precisely segmenting lung nodules from CT scans, underscoring its potential to advance early detection and improve patient care outcomes in lung cancer diagnosis.
arXiv Detail & Related papers (2024-12-31T18:21:57Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [15.790010627377262]
Pulmonary nodules are critical indicators for the early diagnosis of lung cancer.<n>Traditional CT imaging methods suffered from cumbersome procedures, low detection rates, and poor localization accuracy.<n>This paper proposes MSDet, a multiscale attention and receptive field network for detecting tiny pulmonary nodules.
arXiv Detail & Related papers (2024-09-21T06:08:23Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Less Could Be Better: Parameter-efficient Fine-tuning Advances Medical
Vision Foundation Models [71.18275399694689]
The effectiveness of PEFT on medical vision foundation models is still unclear.
We set up new state-of-the-art on a range of data-efficient learning tasks, such as an AUROC score of 80.6% using 1% labeled data on NIH ChestX-ray14.
We hope this study can evoke more attention from the community in the use of PEFT for transfer learning on medical imaging tasks.
arXiv Detail & Related papers (2024-01-22T18:59:07Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2023-03-02T13:58:45Z) - Efficient Lung Cancer Image Classification and Segmentation Algorithm
Based on Improved Swin Transformer [0.0]
transformer model has been applied to the field of computer vision (CV) after its success in natural language processing (NLP)
This paper creatively proposes a segmentation method based on efficient transformer and applies it to medical image analysis.
The algorithm completes the task of lung cancer classification and segmentation by analyzing lung cancer data, and aims to provide efficient technical support for medical staff.
arXiv Detail & Related papers (2022-07-04T15:50:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - CAE-Transformer: Transformer-based Model to Predict Invasiveness of Lung
Adenocarcinoma Subsolid Nodules from Non-thin Section 3D CT Scans [36.093580055848186]
Lung Adenocarcinoma (LAUC) has recently been the most prevalent.
Timely and accurate knowledge of the invasiveness of lung nodules leads to a proper treatment plan and reduces the risk of unnecessary or late surgeries.
The primary imaging modality to assess and predict the invasiveness of LAUCs is the chest CT.
In this paper, a predictive transformer-based framework, referred to as the "CAE-Transformer", is developed to classify LAUCs.
arXiv Detail & Related papers (2021-10-17T04:37:24Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19.
We present an end-to-end multitask learning framework (COVID-MTL) that is capable of automated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19.
arXiv Detail & Related papers (2020-12-10T08:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.