A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples
- URL: http://arxiv.org/abs/2303.12801v1
- Date: Thu, 2 Mar 2023 13:58:45 GMT
- Title: A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples
- Authors: Yang Liu, Yue-Jie Hou, Chen-Xin Qin, Xin-Hui Li, Si-Jing Li, Bin Wang,
Chi-Chun Zhou
- Abstract summary: Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
- Score: 10.006124666261229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of pulmonary nodules by CT is used for screening lung cancer in
early stages.omputer aided diagnosis (CAD) based on deep-learning method can
identify the suspected areas of pulmonary nodules in CT images, thus improving
the accuracy and efficiency of CT diagnosis. The accuracy and robustness of
deep learning models. Method:In this paper, we explore (1) the data
augmentation method based on the generation model and (2) the model structure
improvement method based on the embedding mechanism. Two strategies have been
introduced in this study: a new data augmentation method and a embedding
mechanism. In the augmentation method, a 3D pixel-level statistics algorithm is
proposed to generate pulmonary nodule and by combing the faked pulmonary nodule
and healthy lung, we generate new pulmonary nodule samples. The embedding
mechanism are designed to better understand the meaning of pixels of the
pulmonary nodule samples by introducing hidden variables. Result: The result of
the 3DVNET model with the augmentation method for pulmonary nodule detection
shows that the proposed data augmentation method outperforms the method based
on generative adversarial network (GAN) framework, training accuracy improved
by 1.5%, and with embedding mechanism for pulmonary nodules classification
shows that the embedding mechanism improves the accuracy and robustness for the
classification of pulmonary nodules obviously, the model training accuracy is
close to 1 and the model testing F1-score is 0.90.Conclusion:he proposed data
augmentation method and embedding mechanism are beneficial to improve the
accuracy and robustness of the model, and can be further applied in other
common diagnostic imaging tasks.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules [5.058992545593932]
The 3D simulation model of the lung was established by using the reconstruction method.
A computer aided pulmonary nodule detection model was constructed.
The recognition rate was significantly improved compared to conventional diagnostic methods.
arXiv Detail & Related papers (2024-06-19T04:27:27Z) - DINO-CXR: A self supervised method based on vision transformer for chest
X-ray classification [0.9883261192383611]
We propose a self-supervised method, DINO-CXR, which is a novel adaptation of a self-supervised method, DINO, based on a vision transformer for chest X-ray classification.
A comparative analysis is performed to show the effectiveness of the proposed method for both pneumonia and COVID-19 detection.
arXiv Detail & Related papers (2023-08-01T11:58:49Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
Early detection of lung nodules with computed tomography (CT) is critical for the longer survival of lung cancer patients and better quality of life.
Computer-aided detection/diagnosis (CAD) is proven valuable as a second or concurrent reader in this context.
accurate detection of lung nodules remains a challenge for such CAD systems and even radiologists due to variability in size, location, and appearance of lung nodules.
Motivated by recent computer vision techniques, here we present a self-supervised region-based 3D transformer model to identify lung nodules.
arXiv Detail & Related papers (2022-04-30T01:19:00Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.