Evaluating LLMs' Assessment of Mixed-Context Hallucination Through the Lens of Summarization
- URL: http://arxiv.org/abs/2503.01670v1
- Date: Mon, 03 Mar 2025 15:42:57 GMT
- Title: Evaluating LLMs' Assessment of Mixed-Context Hallucination Through the Lens of Summarization
- Authors: Siya Qi, Rui Cao, Yulan He, Zheng Yuan,
- Abstract summary: Large language models (LLMs) have emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation.<n>In this study, we use summarization as a representative task to evaluate LLMs' capability in detecting mixed-context hallucinations.
- Score: 23.739195769774103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of large language models (LLMs), LLM-as-a-judge has emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation. While previous studies have focused exclusively on single-context evaluation (e.g., discourse faithfulness or world factuality), real-world hallucinations typically involve mixed contexts, which remains inadequately evaluated. In this study, we use summarization as a representative task to comprehensively evaluate LLMs' capability in detecting mixed-context hallucinations, specifically distinguishing between factual and non-factual hallucinations. Through extensive experiments across direct generation and retrieval-based models of varying scales, our main observations are: (1) LLMs' intrinsic knowledge introduces inherent biases in hallucination evaluation; (2) These biases particularly impact the detection of factual hallucinations, yielding a significant performance bottleneck; (3) The fundamental challenge lies in effective knowledge utilization, balancing between LLMs' intrinsic knowledge and external context for accurate mixed-context hallucination evaluation.
Related papers
- Triggering Hallucinations in LLMs: A Quantitative Study of Prompt-Induced Hallucination in Large Language Models [0.0]
Hallucinations in large language models (LLMs) present a growing challenge across real-world applications.
We propose a prompt-based framework to systematically trigger and quantify hallucination.
arXiv Detail & Related papers (2025-05-01T14:33:47Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"
This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
We introduce Reefknot, a comprehensive benchmark targeting relation hallucinations, comprising over 20,000 real-world samples.
We provide a systematic definition of relation hallucinations, integrating perceptive and cognitive perspectives, and construct a relation-based corpus using the Visual Genome scene graph dataset.
We propose a novel confidence-based mitigation strategy, which reduces the hallucination rate by an average of 9.75% across three datasets, including Reefknot.
arXiv Detail & Related papers (2024-08-18T10:07:02Z) - HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation [19.318217051269382]
Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP)
HalluDial is the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation.
The benchmark includes 4,094 dialogues with a total of 146,856 samples.
arXiv Detail & Related papers (2024-06-11T08:56:18Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.