HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation
- URL: http://arxiv.org/abs/2406.07070v1
- Date: Tue, 11 Jun 2024 08:56:18 GMT
- Title: HalluDial: A Large-Scale Benchmark for Automatic Dialogue-Level Hallucination Evaluation
- Authors: Wen Luo, Tianshu Shen, Wei Li, Guangyue Peng, Richeng Xuan, Houfeng Wang, Xi Yang,
- Abstract summary: Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP)
HalluDial is the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation.
The benchmark includes 4,094 dialogues with a total of 146,856 samples.
- Score: 19.318217051269382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), achieving remarkable performance across diverse tasks and enabling widespread real-world applications. However, LLMs are prone to hallucination, generating content that either conflicts with established knowledge or is unfaithful to the original sources. Existing hallucination benchmarks primarily focus on sentence- or passage-level hallucination detection, neglecting dialogue-level evaluation, hallucination localization, and rationale provision. They also predominantly target factuality hallucinations while underestimating faithfulness hallucinations, often relying on labor-intensive or non-specialized evaluators. To address these limitations, we propose HalluDial, the first comprehensive large-scale benchmark for automatic dialogue-level hallucination evaluation. HalluDial encompasses both spontaneous and induced hallucination scenarios, covering factuality and faithfulness hallucinations. The benchmark includes 4,094 dialogues with a total of 146,856 samples. Leveraging HalluDial, we conduct a comprehensive meta-evaluation of LLMs' hallucination evaluation capabilities in information-seeking dialogues and introduce a specialized judge language model, HalluJudge. The high data quality of HalluDial enables HalluJudge to achieve superior or competitive performance in hallucination evaluation, facilitating the automatic assessment of dialogue-level hallucinations in LLMs and providing valuable insights into this phenomenon. The dataset and the code are available at https://github.com/FlagOpen/HalluDial.
Related papers
- Hallu-PI: Evaluating Hallucination in Multi-modal Large Language Models within Perturbed Inputs [54.50483041708911]
Hallu-PI is the first benchmark designed to evaluate hallucination in MLLMs within Perturbed Inputs.
Hallu-PI consists of seven perturbed scenarios, containing 1,260 perturbed images from 11 object types.
Our research reveals a severe bias in MLLMs' ability to handle different types of hallucinations.
arXiv Detail & Related papers (2024-08-02T16:07:15Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Detecting and Evaluating Medical Hallucinations in Large Vision Language Models [22.30139330566514]
Large Vision Language Models (LVLMs) are increasingly integral to healthcare applications.
LVLMs inherit susceptibility to hallucinations-a significant concern in high-stakes medical contexts.
We introduce Med-HallMark, the first benchmark specifically designed for hallucination detection and evaluation.
We also present MediHallDetector, a novel Medical LVLM engineered for precise hallucination detection.
arXiv Detail & Related papers (2024-06-14T17:14:22Z) - ANAH: Analytical Annotation of Hallucinations in Large Language Models [65.12177400764506]
We present $textbfANAH$, a dataset that offers $textbfAN$alytical $textbfA$nnotation of hallucinations in Large Language Models.
ANAH consists of 12k sentence-level annotations for 4.3k LLM responses covering over 700 topics, constructed by a human-in-the-loop pipeline.
Thanks to the fine granularity of the hallucination annotations, we can quantitatively confirm that the hallucinations of LLMs accumulate in the answer and use ANAH to train and evaluate hallucination annotators.
arXiv Detail & Related papers (2024-05-30T17:54:40Z) - DiaHalu: A Dialogue-level Hallucination Evaluation Benchmark for Large Language Models [26.289847386286446]
We propose DiaHalu, the first dialogue-level hallucination evaluation benchmark to our knowledge.
We integrate the collected topics into system prompts and facilitate a dialogue between two ChatGPT3.5.
We manually modify the contents that do not adhere to human language conventions and then have LLMs re-generate, simulating authentic human-machine interaction scenarios.
arXiv Detail & Related papers (2024-03-01T15:38:55Z) - Hal-Eval: A Universal and Fine-grained Hallucination Evaluation Framework for Large Vision Language Models [35.45859414670449]
We introduce a refined taxonomy of hallucinations, featuring a new category: Event Hallucination.
We then utilize advanced LLMs to generate and filter fine grained hallucinatory data consisting of various types of hallucinations.
The proposed benchmark distinctively assesses LVLMs ability to tackle a broad spectrum of hallucinations.
arXiv Detail & Related papers (2024-02-24T05:14:52Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages.
LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images.
We propose a powerful algorithm, LVLM Hallucination Revisor (LURE), to rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions.
arXiv Detail & Related papers (2023-10-01T18:10:53Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
Large Vision-Language Models (LVLMs) have recently achieved remarkable success.
LVLMs are still plagued by the hallucination problem.
Hallucination refers to the information of LVLMs' responses that does not exist in the visual input.
arXiv Detail & Related papers (2023-08-29T08:51:24Z) - HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large
Language Models [146.87696738011712]
Large language models (LLMs) are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge.
To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation benchmark for Large Language Models (HaluEval)
arXiv Detail & Related papers (2023-05-19T15:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.