論文の概要: Building Safe GenAI Applications: An End-to-End Overview of Red Teaming for Large Language Models
- arxiv url: http://arxiv.org/abs/2503.01742v2
- Date: Wed, 05 Mar 2025 14:41:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 12:09:29.220220
- Title: Building Safe GenAI Applications: An End-to-End Overview of Red Teaming for Large Language Models
- Title(参考訳): 安全なGenAIアプリケーションの構築: 大規模言語モデルのためのレッドチーム構築の概要
- Authors: Alberto Purpura, Sahil Wadhwa, Jesse Zymet, Akshay Gupta, Andy Luo, Melissa Kazemi Rad, Swapnil Shinde, Mohammad Shahed Sorower,
- Abstract要約: LLM(Large Language Models)の急速な成長は、プライバシー、セキュリティ、倫理上の懸念を生じさせる。
研究者は最近、レッドチームによる攻撃的なアプローチでこれらの取り組みを補完した。
本稿では,LLMレッド・チームリング文学の簡潔かつ実践的な概要について述べる。
- 参考スコア(独自算出の注目度): 1.9574002186090496
- License:
- Abstract: The rapid growth of Large Language Models (LLMs) presents significant privacy, security, and ethical concerns. While much research has proposed methods for defending LLM systems against misuse by malicious actors, researchers have recently complemented these efforts with an offensive approach that involves red teaming, i.e., proactively attacking LLMs with the purpose of identifying their vulnerabilities. This paper provides a concise and practical overview of the LLM red teaming literature, structured so as to describe a multi-component system end-to-end. To motivate red teaming we survey the initial safety needs of some high-profile LLMs, and then dive into the different components of a red teaming system as well as software packages for implementing them. We cover various attack methods, strategies for attack-success evaluation, metrics for assessing experiment outcomes, as well as a host of other considerations. Our survey will be useful for any reader who wants to rapidly obtain a grasp of the major red teaming concepts for their own use in practical applications.
- Abstract(参考訳): LLM(Large Language Models)の急速な成長は、プライバシー、セキュリティ、倫理上の懸念を生じさせる。
悪意あるアクターによる誤用からLLMシステムを守るための多くの研究が提案されているが、近年の研究者らはこれらの取り組みを、レッド・チームリングを含む攻撃的なアプローチで補完している。
本稿では,多成分系をエンドツーエンドに記述するために構築されたLCMレッド・チームリング文献の簡潔かつ実践的な概要について述べる。
レッドチーム化を動機付けるために、いくつかの著名なLCMの初期安全要件を調査し、その後、レッドチーム化システムとそれを実装するソフトウェアパッケージの異なるコンポーネントを調べます。
我々は,様々な攻撃方法,アタック・サクセス評価のための戦略,実験結果を評価するための指標,その他の考慮事項について紹介する。
我々の調査は、主要なレッドチームの概念を迅速に把握し、実践的な応用に利用したいすべての読者に役立ちます。
関連論文リスト
- Recent advancements in LLM Red-Teaming: Techniques, Defenses, and Ethical Considerations [0.0]
大規模言語モデル(LLM)は自然言語処理タスクにおいて顕著な機能を示しているが、Jailbreak攻撃に対する脆弱性は重大なセキュリティリスクをもたらす。
本稿では,Large Language Model (LLM) のレッドチームにおける攻撃戦略と防御機構の最近の進歩を包括的に分析する。
論文 参考訳(メタデータ) (2024-10-09T01:35:38Z) - Exploring Straightforward Conversational Red-Teaming [3.5294587603612486]
オフザシェルフな大きな言語モデルは、効果的なレッドチームとして機能します。
オフザシェルフモデルは過去の試みに基づいて攻撃戦略を調整することができる。
論文 参考訳(メタデータ) (2024-09-07T13:28:01Z) - Arondight: Red Teaming Large Vision Language Models with Auto-generated Multi-modal Jailbreak Prompts [25.661444231400772]
大規模視覚言語モデル(VLM)は、大規模言語モデル(LLM)の知覚能力を拡張し、拡張する
これらの進歩は、特に有害なコンテンツの生成に関して、重要なセキュリティと倫理上の懸念を引き起こす。
VLMに特化した標準化されたレッドチームフレームワークであるArondightを紹介します。
論文 参考訳(メタデータ) (2024-07-21T04:37:11Z) - Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs) [17.670925982912312]
Red-teamingは、大規模言語モデル(LLM)の脆弱性を特定するテクニックである。
本稿では,LLM に対するリピート攻撃に関する詳細な脅威モデルを提案し,知識の体系化(SoK)を提供する。
論文 参考訳(メタデータ) (2024-07-20T17:05:04Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
レッドチーム、あるいは有害な応答を誘発するプロンプトの特定は、大きな言語モデルの安全なデプロイを保証するための重要なステップである。
新規性と多様性を優先する明確な規則化であっても、既存のアプローチはモード崩壊または効果的な攻撃を発生させることができないことを示す。
我々は,GFlowNetの微調整と二次平滑化フェーズを用いて,多種多様な効果的な攻撃プロンプトを生成するために攻撃モデルを訓練することを提案する。
論文 参考訳(メタデータ) (2024-05-28T19:16:17Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Against The Achilles' Heel: A Survey on Red Teaming for Generative Models [60.21722603260243]
120以上の論文を調査し,言語モデル固有の能力に根ざした,きめ細かい攻撃戦略の分類を導入した。
我々は、様々な自動レッドチーム化アプローチを統合するために、"searcher"フレームワークを開発した。
論文 参考訳(メタデータ) (2024-03-31T09:50:39Z) - MART: Improving LLM Safety with Multi-round Automatic Red-Teaming [72.2127916030909]
本稿では,自動対向的なプロンプト書き込みと安全な応答生成の両方を組み込んだMulti-round Automatic Red-Teaming(MART)手法を提案する。
敵のプロンプトベンチマークでは、安全アライメントが制限されたLDMの違反率は、MARTの4ラウンド後に84.7%まで減少する。
特に、非敵対的なプロンプトに対するモデルの有用性は反復を通して安定しており、LLMは命令に対する強い性能を維持していることを示している。
論文 参考訳(メタデータ) (2023-11-13T19:13:29Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。