Function-coherent gambles
- URL: http://arxiv.org/abs/2503.01855v2
- Date: Fri, 25 Apr 2025 06:57:11 GMT
- Title: Function-coherent gambles
- Authors: Gregory Wheeler,
- Abstract summary: This paper introduces function-coherent gambles, a generalization that accommodates non-linear utility.<n>We prove a representation theorem that characterizes acceptable gambles through continuous linear functionals.<n>We demonstrate how these alternatives to constant-rate exponential discounting can be integrated within the function-coherent framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The desirable gambles framework provides a foundational approach to imprecise probability theory but relies heavily on linear utility assumptions. This paper introduces function-coherent gambles, a generalization that accommodates non-linear utility while preserving essential rationality properties. We establish core axioms for function-coherence and prove a representation theorem that characterizes acceptable gambles through continuous linear functionals. The framework is then applied to analyze various forms of discounting in intertemporal choice, including hyperbolic, quasi-hyperbolic, scale-dependent, and state-dependent discounting. We demonstrate how these alternatives to constant-rate exponential discounting can be integrated within the function-coherent framework. This unified treatment provides theoretical foundations for modeling sophisticated patterns of time preference within the desirability paradigm, bridging a gap between normative theory and observed behavior in intertemporal decision-making under genuine uncertainty.
Related papers
- Function-Coherent Gambles with Non-Additive Sequential Dynamics [0.0]
We relax the additive combination axiom and introduce a nonlinear combination operator that effectively aggregates repeated gambles in the log-domain.<n>Our approach bridges the gap between expectation values and time averages and unifies normative theory with empirically observed non-stationary reward dynamics.
arXiv Detail & Related papers (2025-02-22T14:58:20Z) - An Algebraic Notion of Conditional Independence, and Its Application to Knowledge Representation (full version) [6.983702226751596]
The notion of conditional independence is studied in the framework of approximation fixpoint theory.<n>This gives a language-independent account of conditional independence that can be straightforwardly applied to any logic with fixpoint semantics.
arXiv Detail & Related papers (2024-12-18T10:52:57Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - Rockafellian Relaxation and Stochastic Optimization under Perturbations [0.056247917037481096]
We develop an optimistic" framework based on Rockafellian relaxations in which optimization is conducted not only over the original decision space but also jointly with a choice of model.
The framework centers on the novel concepts of exact and limit-exact Rockafellians, with interpretations of negative'' regularization emerging in certain settings.
arXiv Detail & Related papers (2022-04-10T20:02:41Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
Independent component analysis (ICA) refers to an ensemble of methods which formalize this goal and provide estimation procedure for practical application.
We show that the latent variables can be recovered up to a permutation if one regularizes the latent mechanisms to be sparse.
arXiv Detail & Related papers (2021-07-21T14:22:14Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Self-consistent theory of mobility edges in quasiperiodic chains [62.997667081978825]
We introduce a self-consistent theory of mobility edges in nearest-neighbour tight-binding chains with quasiperiodic potentials.
mobility edges are generic in quasiperiodic systems which lack the energy-independent self-duality of the commonly studied Aubry-Andr'e-Harper model.
arXiv Detail & Related papers (2020-12-02T19:00:09Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.