論文の概要: A Review of Artificial Intelligence Impacting Statistical Process Monitoring and Future Directions
- arxiv url: http://arxiv.org/abs/2503.01858v1
- Date: Sun, 23 Feb 2025 04:19:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 03:50:38.577660
- Title: A Review of Artificial Intelligence Impacting Statistical Process Monitoring and Future Directions
- Title(参考訳): 統計的プロセスモニタリングに影響を及ぼす人工知能の展望と今後の展望
- Authors: Shing I Chang, Parviz Ghafariasl,
- Abstract要約: 人工知能(AI)の最近の進歩は、統計プロセス監視(SPM)アプリケーションにAIを採用するという想像力を再活性化させた。
最終的な目的は、統計的プロセス監視(SPM)をスマートプロセス制御(SMPC)に変換することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: It has been 100 years since statistical process control (SPC) or statistical process monitoring (SPM) was first introduced for production processes and later applied to service, healthcare, and other industries. The techniques applied to SPM applications are mostly statistically oriented. Recent advances in Artificial Intelligence (AI) have reinvigorated the imagination of adopting AI for SPM applications. This manuscript begins with a concise review of the historical development of the statistically based SPM methods. Next, this manuscript explores AI and Machine Learning (ML) algorithms and methods applied in various SPM applications, addressing quality characteristics of univariate, multivariate, profile, and image. These AI methods can be classified into the following categories: classification, pattern recognition, time series applications, and generative AI. Specifically, different kinds of neural networks, such as artificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial networks (GAN), are among the most implemented AI methods impacting SPM. Finally, this manuscript outlines a couple of future directions that harness the potential of the Large Multimodal Model (LMM) for advancing SPM research and applications in complex systems. The ultimate objective is to transform statistical process monitoring (SPM) into smart process control (SMPC), where corrective actions are autonomously implemented to either prevent quality issues or restore process performance.
- Abstract(参考訳): 統計プロセス制御(SPC)や統計プロセス監視(SPM)が最初に生産プロセスに導入されてから100年が経過した。
SPMアプリケーションに適用される技術は主に統計的指向である。
人工知能(AI)の最近の進歩は、SPMアプリケーションにAIを採用するという想像力を再活性化させた。
この写本は、統計的にベースとしたSPM手法の歴史的発展の簡潔なレビューから始まる。
次に、多変量、多変量、プロファイル、画像の品質特性に対処するため、さまざまなSPMアプリケーションに適用されるAIと機械学習(ML)アルゴリズムと手法について検討する。
これらのAI手法は、分類、パターン認識、時系列アプリケーション、生成AIの3つのカテゴリに分類される。
具体的には、人工知能ニューラルネットワーク(ANN)、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、GAN(Generative Adversarial Network)といったさまざまな種類のニューラルネットワークが、SPMに影響を与える最も実装されたAI手法である。
最後に、この原稿は、LMM(Large Multimodal Model)の可能性を生かして、複雑なシステムにおけるSPM研究と応用を進めるための2つの方向性を概説する。
最終的な目的は、統計的プロセス監視(SPM)をスマートプロセス制御(SMPC)に変換することである。
関連論文リスト
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production [1.3499500088995464]
本研究では,自動車生産環境における人工知能適用の有効性について検討した。
データ構造は、コンテキストの特徴を識別するために分析され、ワンホット符号化を使用して前処理される。
この研究は、高度に可変された生産データにAIメソッドを効果的に適用し、ビジネス価値を付加できることを実証している。
論文 参考訳(メタデータ) (2025-01-13T13:28:03Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Impacts of Data Preprocessing and Hyperparameter Optimization on the Performance of Machine Learning Models Applied to Intrusion Detection Systems [0.8388591755871736]
侵入検知システム(IDS)は継続的に改善されている。
その多くは、脅威を特定するために機械学習(ML)技術を採用している。
本稿では,この研究ギャップを埋める研究について述べる。
論文 参考訳(メタデータ) (2024-07-15T14:30:25Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Generating synthetic multi-dimensional molecular-mediator time series
data for artificial intelligence-based disease trajectory forecasting and
drug development digital twins: Considerations [0.0]
合成データの利用は、ニューラルネットワークベースの人工知能(AI)システムの開発における重要なステップとして認識されている。
このタイプの合成データを生成する統計的およびデータ中心の機械学習手段の欠如は、要因の組み合わせによるものである。
多次元時系列データの特定因子を考慮に入れた合成データの生成は、仲介者・バイオマーカーに基づくAI予測システムの開発に欠かせない能力である。
論文 参考訳(メタデータ) (2023-03-16T03:13:53Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Concurrent Neural Tree and Data Preprocessing AutoML for Image
Classification [0.5735035463793008]
現在のSOTA (State-of-the-art) には、アルゴリズム検索空間の一部として入力データを操作するための従来の手法は含まれていない。
進化的多目的アルゴリズム設計エンジン(EMADE, Evolutionary Multi-objective Algorithm Design Engine)は、従来の機械学習手法のための多目的進化的検索フレームワークである。
CIFAR-10画像分類ベンチマークデータセットにおいて,これらの手法を検索空間の一部として含めることで,性能向上の可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T20:03:09Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。