論文の概要: Data Augmentation for Instruction Following Policies via Trajectory Segmentation
- arxiv url: http://arxiv.org/abs/2503.01871v1
- Date: Tue, 25 Feb 2025 22:06:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-09 03:20:22.685363
- Title: Data Augmentation for Instruction Following Policies via Trajectory Segmentation
- Title(参考訳): トラジェクティブセグメンテーションによる政策指示のためのデータ強化
- Authors: Niklas Höpner, Ilaria Tiddi, Herke van Hoof,
- Abstract要約: 軌道からラベル付きセグメントを抽出する方法を探索する。
目標は、模倣学習によって訓練された指示追従ポリシーの性能を改善することである。
- 参考スコア(独自算出の注目度): 23.15588842738139
- License:
- Abstract: The scalability of instructable agents in robotics or gaming is often hindered by limited data that pairs instructions with agent trajectories. However, large datasets of unannotated trajectories containing sequences of various agent behaviour (play trajectories) are often available. In a semi-supervised setup, we explore methods to extract labelled segments from play trajectories. The goal is to augment a small annotated dataset of instruction-trajectory pairs to improve the performance of an instruction-following policy trained downstream via imitation learning. Assuming little variation in segment length, recent video segmentation methods can effectively extract labelled segments. To address the constraint of segment length, we propose Play Segmentation (PS), a probabilistic model that finds maximum likely segmentations of extended subsegments, while only being trained on individual instruction segments. Our results in a game environment and a simulated robotic gripper setting underscore the importance of segmentation; randomly sampled segments diminish performance, while incorporating labelled segments from PS improves policy performance to the level of a policy trained on twice the amount of labelled data.
- Abstract(参考訳): ロボット工学やゲームにおけるインストラクタブルエージェントのスケーラビリティは、エージェントトラジェクタと命令をペア付ける限られたデータによって妨げられることが多い。
しかし、様々なエージェント動作(プレイ・トラジェクトリ)のシーケンスを含む、注釈のないトラジェクトリの大規模なデータセットは、しばしば利用可能である。
半教師付きセットアップでは,プレイトラジェクトリからラベル付きセグメントを抽出する方法を探索する。
目標は、模倣学習を通じて下流で訓練された命令追従ポリシーの性能を向上させるために、命令-軌道対の小さな注釈付きデータセットを強化することである。
セグメント長のばらつきが少ないと仮定すると、最近のビデオセグメンテーション手法は効果的にラベル付きセグメントを抽出できる。
セグメント長の制約に対処するために,個別の命令セグメントのみを訓練しながら,拡張サブセグメントの最大可能性セグメントを求める確率論的モデルであるプレイセグメンテーション(PS)を提案する。
ランダムにサンプリングされたセグメントは性能を低下させる一方、PSのラベル付きセグメントを組み込むことで、ラベル付きデータの2倍の量でトレーニングされたポリシーのレベルまで向上する。
関連論文リスト
- Few-shot Multispectral Segmentation with Representations Generated by Reinforcement Learning [0.0]
本稿では,強化学習を用いたマルチスペクトル画像における少数ショットセグメンテーション性能向上のための新しい手法を提案する。
我々の手法は、エージェントを訓練して、小さなデータセットを使って最も情報に富む表現を識別することを含む。
表現の長さが限られているため、モデルはオーバーフィッティングのリスクを伴わずに有用な表現を受け取る。
論文 参考訳(メタデータ) (2023-11-20T15:04:16Z) - Tracking Anything with Decoupled Video Segmentation [87.07258378407289]
我々はデカップリングビデオセグメンテーションアプローチ(DEVA)を開発した。
タスク固有のイメージレベルセグメンテーションと、クラス/タスク非依存の双方向の時間的伝搬で構成されている。
この分離された定式化は、複数のデータスカースタスクにおけるエンドツーエンドのアプローチと良好に比較できることを示す。
論文 参考訳(メタデータ) (2023-09-07T17:59:41Z) - A Semi-supervised Approach for Activity Recognition from Indoor
Trajectory Data [0.822021749810331]
協調生産環境において, 騒音の多い室内軌道データから移動物体の動作を分類する作業について検討する。
本稿では,まず情報理論の基準を適用し,長い軌道をセグメントに分割する半教師付き機械学習手法を提案する。
セグメントは制約付き階層的クラスタリング法に基づいて自動的にラベル付けされる。
論文 参考訳(メタデータ) (2023-01-09T01:20:50Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
我々は,LiDAR点雲を用いた屋外シーンのためのラベル効率のよいセマンティックセマンティックセマンティクスパイプラインを提案する。
本手法は,半弱教師付き学習を用いて,効率的なラベリング手法を設計する。
提案手法は,100%ラベル付き完全教師付き手法と比較して,さらに競争力が高い。
論文 参考訳(メタデータ) (2022-10-14T19:13:36Z) - A Closer Look at Temporal Ordering in the Segmentation of Instructional
Videos [17.712793578388126]
本稿では,PSS(Process and Summarization)を概観し,現在の手法に対する3つの根本的な改善を提案する。
セグメントの順序を考慮に入れた動的プログラミングに基づく新しいセグメンテーション指標を提案する。
本稿では,セグメントマッピングの時間的順序を制約するマッチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T14:44:19Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - Unsupervised Action Segmentation with Self-supervised Feature Learning
and Co-occurrence Parsing [32.66011849112014]
時間的アクションセグメンテーションは、ビデオの各フレームをアクションラベルで分類するタスクである。
本研究では,ラベル付けされていないビデオのコーパスで動作する自己教師型手法を探索し,ビデオ全体にわたる時間的セグメントのセットを予測する。
我々は,行動の構造に基づくサブアクション間の相関を捉えるだけでなく,そのサブアクションの時間的軌跡を正確かつ一般的な方法で推定する,新しい共起動作解析アルゴリズムであるCAPを開発した。
論文 参考訳(メタデータ) (2021-05-29T00:29:40Z) - STEP: Segmenting and Tracking Every Pixel [107.23184053133636]
新しいベンチマークを示す: Segmenting and Tracking Every Pixel (STEP)
私たちの仕事は、空間領域と時間領域の両方で密な解釈を必要とする現実世界の設定で、このタスクをターゲットとする最初のものです。
性能を測定するために,新しい評価指標と追跡品質(STQ)を提案する。
論文 参考訳(メタデータ) (2021-02-23T18:43:02Z) - SegGroup: Seg-Level Supervision for 3D Instance and Semantic
Segmentation [88.22349093672975]
アノテーションの場所を示すためにインスタンス毎に1つのポイントをクリックするだけでよい、弱い教師付きポイントクラウドセグメンテーションアルゴリズムを設計します。
事前処理のオーバーセグメンテーションにより、これらの位置アノテーションをセグレベルのラベルとしてセグメントに拡張する。
seg-level supervised method (SegGroup) は、完全注釈付きポイントレベルのsupervised method で比較結果が得られることを示した。
論文 参考訳(メタデータ) (2020-12-18T13:23:34Z) - Self-supervised Sparse to Dense Motion Segmentation [13.888344214818737]
単一ビデオフレームからスパース動作セグメントの密度化を学習するための自己教師付き手法を提案する。
FBMS59 と DAVIS16 でよく知られた動作セグメンテーションデータセットについて検討した。
論文 参考訳(メタデータ) (2020-08-18T11:40:18Z) - Weakly Supervised Temporal Action Localization with Segment-Level Labels [140.68096218667162]
時間的アクションローカライゼーションは、テストパフォーマンスとアノテーション時間コストのトレードオフを示す。
ここでは、アノテーションがアクションを観察するときにセグメントがラベル付けされる。
我々は、ラベル付きセグメントから積分的な動作部分を学ぶために、損失サンプリングと見なされる部分的なセグメント損失を考案する。
論文 参考訳(メタデータ) (2020-07-03T10:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。