Constructing balanced datasets for predicting failure modes in structural systems under seismic hazards
- URL: http://arxiv.org/abs/2503.01882v1
- Date: Wed, 26 Feb 2025 22:11:51 GMT
- Title: Constructing balanced datasets for predicting failure modes in structural systems under seismic hazards
- Authors: Jungho Kim, Taeyong Kim,
- Abstract summary: This study proposes a framework for constructing balanced datasets that include distinct failure modes.<n>Deep neural network models are trained on balanced and imbalanced datasets to highlight the importance of dataset balancing.
- Score: 1.192436948211501
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate prediction of structural failure modes under seismic excitations is essential for seismic risk and resilience assessment. Traditional simulation-based approaches often result in imbalanced datasets dominated by non-failure or frequently observed failure scenarios, limiting the effectiveness in machine learning-based prediction. To address this challenge, this study proposes a framework for constructing balanced datasets that include distinct failure modes. The framework consists of three key steps. First, critical ground motion features (GMFs) are identified to effectively represent ground motion time histories. Second, an adaptive algorithm is employed to estimate the probability densities of various failure domains in the space of critical GMFs and structural parameters. Third, samples generated from these probability densities are transformed into ground motion time histories by using a scaling factor optimization process. A balanced dataset is constructed by performing nonlinear response history analyses on structural systems with parameters matching the generated samples, subjected to corresponding transformed ground motion time histories. Deep neural network models are trained on balanced and imbalanced datasets to highlight the importance of dataset balancing. To further evaluate the framework's applicability, numerical investigations are conducted using two different structural models subjected to recorded and synthetic ground motions. The results demonstrate the framework's robustness and effectiveness in addressing dataset imbalance and improving machine learning performance in seismic failure mode prediction.
Related papers
- A recursive Bayesian neural network for constitutive modeling of sands under monotonic loading [0.0]
In geotechnical engineering, models play a crucial role in describing soil behavior under varying loading conditions.<n>Data-driven deep learning (DL) models offer a promising alternative for developing predictive models.<n>When prediction is the primary focus, quantifying the predictive uncertainty of a trained DL model is crucial for informed decision-making.
arXiv Detail & Related papers (2025-01-17T10:15:03Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
We introduce RatPose, a bio-robot motion prediction dataset constructed by considering the influence factors of individuals and environments.
We propose a Dual-stream Motion-Scenario Decoupling framework that effectively separates scenario-oriented and motion-oriented features.
We demonstrate significant performance improvements of the proposed textitDMSD framework on different difficulty-level tasks.
arXiv Detail & Related papers (2023-05-17T14:14:31Z) - Mining Causality from Continuous-time Dynamics Models: An Application to
Tsunami Forecasting [22.434845478979604]
We propose a mechanism for mining causal structures from continuous-time models.
We train models to capture the causal structure by enforcing sparsity in the weights of the input layers of the dynamics models.
We apply our method to a real-world problem, namely tsunami forecasting, where the exact causal-structures are difficult to characterize.
arXiv Detail & Related papers (2022-10-10T18:53:13Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Complex Sequential Data Analysis: A Systematic Literature Review of
Existing Algorithms [0.9649642656207869]
This paper reviews past approaches to the use of deep-learning frameworks for the analysis of irregular-patterned datasets.
Traditional deep-learning methods perform poorly or even fail when trying to analyse these datasets.
The performance of deep-learning frameworks was found to be evaluated mainly using mean absolute error and root mean square error accuracy metrics.
arXiv Detail & Related papers (2020-07-22T17:53:00Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.