論文の概要: Conceptual Contrastive Edits in Textual and Vision-Language Retrieval
- arxiv url: http://arxiv.org/abs/2503.01914v1
- Date: Sat, 01 Mar 2025 10:14:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:08.460387
- Title: Conceptual Contrastive Edits in Textual and Vision-Language Retrieval
- Title(参考訳): テキスト・視覚言語検索における概念コントラスト編集
- Authors: Maria Lymperaiou, Giorgos Stamou,
- Abstract要約: 我々は、検索モデルの表現に印字された注目すべきパターンやバイアスを明らかにするために、ポストホックな概念的コントラスト編集を用いる。
我々はこれらの編集をブラックボックス方式で言語的および言語学的事前学習モデルの両方を説明するために応用する。
また、モデル結果に対する対照的な介入による単語ごとの影響を評価するための新しい指標も導入する。
- 参考スコア(独自算出の注目度): 1.8591405259852054
- License:
- Abstract: As deep learning models grow in complexity, achieving model-agnostic interpretability becomes increasingly vital. In this work, we employ post-hoc conceptual contrastive edits to expose noteworthy patterns and biases imprinted in representations of retrieval models. We systematically design optimal and controllable contrastive interventions targeting various parts of speech, and effectively apply them to explain both linguistic and visiolinguistic pre-trained models in a black-box manner. Additionally, we introduce a novel metric to assess the per-word impact of contrastive interventions on model outcomes, providing a comprehensive evaluation of each intervention's effectiveness.
- Abstract(参考訳): ディープラーニングモデルが複雑化するにつれて、モデルに依存しない解釈可能性の実現がますます不可欠になっている。
本研究では,ポストホックな概念的コントラスト編集を用いて,検索モデルの表現に埋め込まれた注目すべきパターンやバイアスを明らかにする。
音声の様々な部分を対象とする最適かつ制御可能なコントラスト的介入を体系的に設計し、ブラックボックス方式で言語的および視覚言語的に事前訓練されたモデルの両方を説明するために効果的に適用する。
さらに,単語ごとのコントラスト的介入がモデル結果に与える影響を評価し,各介入の有効性を総合的に評価する指標も導入した。
関連論文リスト
- Analyzing Persuasive Strategies in Meme Texts: A Fusion of Language Models with Paraphrase Enrichment [0.23020018305241333]
本稿では,ミームテキストにおける説得手法の階層的マルチラベル検出へのアプローチについて述べる。
本研究の範囲は、革新的なトレーニング技術とデータ強化戦略を通じて、モデルパフォーマンスの向上を含む。
論文 参考訳(メタデータ) (2024-07-01T20:25:20Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Improving Factuality of Abstractive Summarization via Contrastive Reward
Learning [77.07192378869776]
本稿では,報酬学習と実効性指標の最近の発展を取り入れた,シンプルだが効果的なコントラスト学習フレームワークを提案する。
実証的研究により,提案手法により,実測値のフィードバックから要約モデルを学習できることが実証された。
論文 参考訳(メタデータ) (2023-07-10T12:01:18Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
既存の視覚・言語モデルと視覚のみのモデルにおける視覚表現の比較分析を行う。
我々の経験的観察は、視覚・言語モデルがラベル予測タスクに優れていることを示唆している。
我々の研究は、視覚学習における言語の役割に光を当て、様々な事前学習モデルの実証的なガイドとして機能することを願っている。
論文 参考訳(メタデータ) (2022-12-01T05:00:18Z) - Towards explainable evaluation of language models on the semantic
similarity of visual concepts [0.0]
本稿では,視覚語彙の意味的類似性に焦点をあて,ハイパフォーマンスな事前学習言語モデルの振る舞いを考察する。
まず、検索したインスタンスの概念的品質を理解するために必要となる、説明可能な評価指標の必要性に対処する。
第二に、健全なクエリセマンティクスに対する敵対的な介入は、不透明なメトリクスの脆弱性を露呈し、学習された言語表現におけるパターンを強調します。
論文 参考訳(メタデータ) (2022-09-08T11:40:57Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
モデル予測動作を2つの新しいモジュールで解釈するLearable Visual Words (LVW)を提案する。
意味的な視覚的単語学習は、カテゴリ固有の制約を緩和し、異なるカテゴリ間で共有される一般的な視覚的単語を可能にする。
6つの視覚的ベンチマーク実験により,提案したLVWの精度とモデル解釈における優れた効果が示された。
論文 参考訳(メタデータ) (2022-05-22T03:24:45Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Efficient Multi-Modal Embeddings from Structured Data [0.0]
マルチモーダルワードセマンティクスは、知覚入力による埋め込みを強化することを目的としている。
ビジュアルグラウンドは言語アプリケーションにも貢献できる。
新しい埋め込みは、テキストベースの埋め込みのための補完的な情報を伝達する。
論文 参考訳(メタデータ) (2021-10-06T08:42:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。