論文の概要: A Deep Autoregressive Model for Dynamic Combinatorial Complexes
- arxiv url: http://arxiv.org/abs/2503.01999v1
- Date: Mon, 03 Mar 2025 19:15:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:14:05.575453
- Title: A Deep Autoregressive Model for Dynamic Combinatorial Complexes
- Title(参考訳): 動的コンビネートコンプレックスの深部自己回帰モデル
- Authors: Ata Tuna,
- Abstract要約: DAMCC(Deep Autoregressive Model for Dynamic Combinatorial Complexes)は,動的コンプレックス(CC)を生成するために設計された最初のディープラーニングモデルである。
従来のグラフベースのモデルとは異なり、CCは高次のインタラクションをキャプチャし、ソーシャルネットワーク、生物学的システム、進化するインフラを表現するのに理想的である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce DAMCC (Deep Autoregressive Model for Dynamic Combinatorial Complexes), the first deep learning model designed to generate dynamic combinatorial complexes (CCs). Unlike traditional graph-based models, CCs capture higher-order interactions, making them ideal for representing social networks, biological systems, and evolving infrastructures. While existing models primarily focus on static graphs, DAMCC addresses the challenge of modeling temporal dynamics and higher-order structures in dynamic networks. DAMCC employs an autoregressive framework to predict the evolution of CCs over time. Through comprehensive experiments on real-world and synthetic datasets, we demonstrate its ability to capture both temporal and higher-order dependencies. As the first model of its kind, DAMCC lays the foundation for future advancements in dynamic combinatorial complex modeling, with opportunities for improved scalability and efficiency on larger networks.
- Abstract(参考訳): DAMCC(Deep Autoregressive Model for Dynamic Combinatorial Complexes)は,動的組合せ錯体(CC)を生成するために設計された最初のディープラーニングモデルである。
従来のグラフベースのモデルとは異なり、CCは高次のインタラクションをキャプチャし、ソーシャルネットワーク、生物学的システム、進化するインフラを表現するのに理想的である。
既存のモデルは静的グラフに主眼を置いているが、DAMCCは動的ネットワークにおける時間的ダイナミクスと高次構造をモデル化するという課題に対処している。
DAMCCは、時間とともにCCの進化を予測するために自己回帰フレームワークを使用している。
実世界のデータセットと合成データセットに関する包括的な実験を通じて、時間的および高次両方の依存関係をキャプチャする能力を示す。
この種の最初のモデルとして、DAMCCは、より大規模なネットワークにおけるスケーラビリティと効率を向上させる機会を持つ、動的組合せ複雑モデリングの将来の進歩の基礎を築いている。
関連論文リスト
- Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
本研究では,事前学習した映像生成モデルを制御可能な世界シミュレータに変換するための動的世界シミュレーション(DWS)を提案する。
条件付き動作と生成した視覚的変化の正確なアライメントを実現するために,軽量で普遍的な動作条件付きモジュールを導入する。
実験により、DWSは拡散モデルと自己回帰変換モデルの両方に汎用的に適用可能であることが示された。
論文 参考訳(メタデータ) (2025-02-10T14:49:09Z) - A Comparative Study on Dynamic Graph Embedding based on Mamba and Transformers [0.29687381456164]
本研究では,変圧器と最近提案されたMambaアーキテクチャを用いた動的グラフ埋め込み手法の比較解析を行った。
グラフ畳み込みネットワークを用いたTransformerG2G Augment、グラフ同型ネットワークエッジ畳み込みを用いたDG-Mamba、GDG-Mambaの3つの新しいモデルを導入する。
複数のベンチマークデータセットに対する実験により,Mambaベースのモデルが,リンク予測タスクにおけるトランスフォーマーベースのアプローチに匹敵する,あるいは優れた性能を達成できることが示されている。
論文 参考訳(メタデータ) (2024-12-15T19:56:56Z) - DynInt: Dynamic Interaction Modeling for Large-scale Click-Through Rate
Prediction [0.0]
機能インタラクションの学習は、Adsランキングとレコメンデーションシステムにおける大規模なCTR予測の成功の鍵である。
このような問題をモデル化するために、ディープニューラルネットワークベースのモデルが広く採用されている。
我々はDynIntという新しいモデルを提案する。DynIntは動的でデータに依存しない高次相互作用を学習する。
論文 参考訳(メタデータ) (2023-01-03T13:01:30Z) - DAMNETS: A Deep Autoregressive Model for Generating Markovian Network
Time Series [6.834250594353335]
ネットワーク時系列生成モデル(動的グラフとも呼ばれる)は疫学、生物学、経済学などの分野において大きな可能性を秘めている。
本稿では,ネットワーク時系列のスケーラブルな深層生成モデルであるDAMNETSを紹介する。
論文 参考訳(メタデータ) (2022-03-28T18:14:04Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
バリア証明書(BC)の自動的,形式的,反例に基づく合成手法を提案する。
このアプローチは、ニューラルネットワークとして構造化されたBCの候補を操作する誘導的フレームワークと、その候補の有効性を認証するか、反例を生成する音検証器によって支えられている。
その結果,音のBCsを最大2桁の速度で合成できることがわかった。
論文 参考訳(メタデータ) (2020-07-07T07:39:42Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
本稿では、逐次階層型潜在変数モデルであるリレーショナル状態空間モデル(R-SSM)を紹介する。
R-SSMはグラフニューラルネットワーク(GNN)を用いて、複数の相関オブジェクトの結合状態遷移をシミュレートする。
R-SSMの実用性は、合成および実時間時系列データセットで実証的に評価される。
論文 参考訳(メタデータ) (2020-01-13T03:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。