MobRFFI: Non-cooperative Device Re-identification for Mobility Intelligence
- URL: http://arxiv.org/abs/2503.02156v1
- Date: Tue, 04 Mar 2025 00:39:50 GMT
- Title: MobRFFI: Non-cooperative Device Re-identification for Mobility Intelligence
- Authors: Stepan Mazokha, Fanchen Bao, George Sklivanitis, Jason O. Hallstrom,
- Abstract summary: We present MobRFFI, an AI-based device fingerprinting and re-identification framework for WiFi networks.<n>Our approach achieves 94% and 100% device accuracy in multi-day and single-day re-identification scenarios, respectively.<n>We also collect a novel dataset, MobRFFI, for granular multi-receiver WiFi device fingerprinting evaluation.
- Score: 0.984963525011891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: WiFi-based mobility monitoring in urban environments can provide valuable insights into pedestrian and vehicle movements. However, MAC address randomization introduces a significant obstacle in accurately estimating congestion levels and path trajectories. To this end, we consider radio frequency fingerprinting and re-identification for attributing WiFi traffic to emitting devices without the use of MAC addresses. We present MobRFFI, an AI-based device fingerprinting and re-identification framework for WiFi networks that leverages an encoder deep learning model to extract unique features based on WiFi chipset hardware impairments. It is entirely independent of frame type. When evaluated on the WiFi fingerprinting dataset WiSig, our approach achieves 94% and 100% device accuracy in multi-day and single-day re-identification scenarios, respectively. We also collect a novel dataset, MobRFFI, for granular multi-receiver WiFi device fingerprinting evaluation. Using the dataset, we demonstrate that the combination of fingerprints from multiple receivers boosts re-identification performance from 81% to 100% on a single-day scenario and from 41% to 100% on a multi-day scenario.
Related papers
- Leveraging Machine Learning for Accurate IoT Device Identification in Dynamic Wireless Contexts [4.002351785644765]
This work introduces "accumulation score" as a novel approach to capturing fine-grained channel dynamics.
We implement the proposed methods and measure the accuracy and overhead of device identification in real-world scenarios.
The results confirm that by incorporating the accumulation score for balanced data collection and training machine learning algorithms, we achieve an F1 score of over 97% for device identification.
arXiv Detail & Related papers (2024-05-15T22:34:52Z) - Vision Reimagined: AI-Powered Breakthroughs in WiFi Indoor Imaging [4.236383297604285]
WiFi as an omnipresent signal is a promising candidate for carrying out passive imaging and synchronizing the up-to-date information to all connected devices.
This is the first research work to consider WiFi indoor imaging as a multi-modal image generation task that converts the measured WiFi power into a high-resolution indoor image.
Our proposed WiFi-GEN network achieves a shape reconstruction accuracy that is 275% of that achieved by physical model-based methods.
arXiv Detail & Related papers (2024-01-09T02:20:30Z) - Autosen: improving automatic wifi human sensing through cross-modal
autoencoder [56.44764266426344]
WiFi human sensing is highly regarded for its low-cost and privacy advantages in recognizing human activities.
Traditional cross-modal methods, aimed at enabling self-supervised learning without labeled data, struggle to extract meaningful features from amplitude-phase combinations.
We introduce AutoSen, an innovative automatic WiFi sensing solution that departs from conventional approaches.
arXiv Detail & Related papers (2024-01-08T19:50:02Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - RF Fingerprinting Needs Attention: Multi-task Approach for Real-World
WiFi and Bluetooth [1.0312968200748116]
A novel cross-domain attentional multi-task architecture - xDom - is presented in this work.
We resort to real-world IoT WiFi and Bluetooth (BT) emissions in a rich multipath and unavoidable interference environment.
We report performance improvements by up to 59.3% and 4.91x under single-task WiFi and BT fingerprinting respectively.
arXiv Detail & Related papers (2022-09-07T13:38:06Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
An end-to-end WiFi signal neural network (SNN) is proposed to enable WiFi-only sensing in both line-of-sight and non-line-of-sight scenarios.
Especially, the 3D convolution module is able to explore thetemporal continuity of WiFi signals, and the feature self-attention module can explicitly maintain dominant features.
arXiv Detail & Related papers (2022-06-20T16:03:45Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
A new WiFi-based and video-based neural network (WiNN) is proposed to improve the robustness of activity recognition.
Our results show that WiVi data set satisfies the primary demand and all three branches in the proposed pipeline keep more than $80%$ of activity recognition accuracy.
arXiv Detail & Related papers (2022-05-24T10:49:11Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring.
We propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios.
arXiv Detail & Related papers (2022-05-24T10:20:16Z) - Immediate Proximity Detection Using Wi-Fi-Enabled Smartphones [1.3706331473063877]
We present a new class of methods for detecting whether or not two Wi-Fi-enabled devices are in immediate physical proximity.
Our goal is to enhance the accuracy of smartphone-based exposure notification and contact tracing systems.
arXiv Detail & Related papers (2021-06-05T02:17:01Z) - Self-Supervised WiFi-Based Activity Recognition [3.4473723375416188]
We extract fine-grained physical layer information from WiFi devices for passive activity recognition in indoor environments.
We propose the use of self-supervised contrastive learning to improve activity recognition performance.
We observe a 17.7% increase in macro averaged F1 score on the task of WiFi based activity recognition.
arXiv Detail & Related papers (2021-04-19T06:40:21Z) - Vision Meets Wireless Positioning: Effective Person Re-identification
with Recurrent Context Propagation [120.18969251405485]
Existing person re-identification methods rely on the visual sensor to capture the pedestrians.
Mobile phone can be sensed by WiFi and cellular networks in the form of a wireless positioning signal.
We propose a novel recurrent context propagation module that enables information to propagate between visual data and wireless positioning data.
arXiv Detail & Related papers (2020-08-10T14:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.