Large Language Models as Natural Selector for Embodied Soft Robot Design
- URL: http://arxiv.org/abs/2503.02249v1
- Date: Tue, 04 Mar 2025 03:55:10 GMT
- Title: Large Language Models as Natural Selector for Embodied Soft Robot Design
- Authors: Changhe Chen, Xiaohao Xu, Xiangdong Wang, Xiaonan Huang,
- Abstract summary: This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether Large Language Models can learn representations of soft robot designs.<n>Our experiments reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences.
- Score: 5.023206838671049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing soft robots is a complex and iterative process that demands cross-disciplinary expertise in materials science, mechanics, and control, often relying on intuition and extensive experimentation. While Large Language Models (LLMs) have demonstrated impressive reasoning abilities, their capacity to learn and apply embodied design principles--crucial for creating functional robotic systems--remains largely unexplored. This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether LLMs can learn representations of soft robot designs that effectively bridge the gap between high-level task descriptions and low-level morphological and material choices. RoboCrafter-QA leverages the EvoGym simulator to generate a diverse set of soft robot design challenges, spanning robotic locomotion, manipulation, and balancing tasks. Our experiments with state-of-the-art multi-modal LLMs reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences. We further demonstrate the practical utility of LLMs for robot design initialization. Our code and benchmark will be available to encourage the community to foster this exciting research direction.
Related papers
- RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete [27.814422322892522]
Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts.<n>They lack three essential robotic brain capabilities: Planning Capability, Affordance Perception, and Trajectory Prediction.<n>We introduce ShareRobot, a dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory.<n>We develop RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizing a multi-stage training strategy.
arXiv Detail & Related papers (2025-02-28T17:30:39Z) - On the Exploration of LM-Based Soft Modular Robot Design [26.847859137653487]
Large language models (LLMs) have demonstrated promising capabilities in modeling real-world knowledge.
In this paper, we explore the potential of using LLMs to aid in the design of soft modular robots.
Our model performs well in evaluations for designing soft modular robots with uni- and bi-directional and stair-descending capabilities.
arXiv Detail & Related papers (2024-11-01T04:03:05Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
We introduce LLARVA, a model trained with a novel instruction tuning method to unify a range of robotic learning tasks, scenarios, and environments.
We generate 8.5M image-visual trace pairs from the Open X-Embodiment dataset in order to pre-train our model.
Experiments yield strong performance, demonstrating that LLARVA performs well compared to several contemporary baselines.
arXiv Detail & Related papers (2024-06-17T17:55:29Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives [46.57277568357048]
Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains.
For embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception.
We propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.
arXiv Detail & Related papers (2024-01-09T03:22:16Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
Large language models (LLMs) possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots.
This review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning.
arXiv Detail & Related papers (2023-11-13T10:46:35Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - What Matters in Language Conditioned Robotic Imitation Learning [26.92329260907805]
We study the most critical challenges in learning language conditioned policies from offline free-form imitation datasets.
We present a novel approach that significantly outperforms the state of the art on the challenging language conditioned long-horizon robot manipulation CALVIN benchmark.
arXiv Detail & Related papers (2022-04-13T08:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.