AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
- URL: http://arxiv.org/abs/2503.02268v3
- Date: Tue, 15 Apr 2025 02:32:21 GMT
- Title: AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
- Authors: Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, Chi Zhang,
- Abstract summary: We propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility.<n>Our approach incorporates a memory mechanism that records the agent's task execution history.<n> Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy.
- Score: 34.70342284525283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have led to the development of intelligent LLM-based agents capable of interacting with graphical user interfaces (GUIs). These agents demonstrate strong reasoning and adaptability, enabling them to perform complex tasks that traditionally required predefined rules. However, the reliance on step-by-step reasoning in LLM-based agents often results in inefficiencies, particularly for routine tasks. In contrast, traditional rule-based systems excel in efficiency but lack the intelligence and flexibility to adapt to novel scenarios. To address this challenge, we propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility. Our approach incorporates a memory mechanism that records the agent's task execution history. By analyzing this history, the agent identifies repetitive action sequences and evolves high-level actions that act as shortcuts, replacing these low-level operations and improving efficiency. This allows the agent to focus on tasks requiring more complex reasoning, while simplifying routine actions. Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy. The code will be open-sourced to support further research.
Related papers
- API Agents vs. GUI Agents: Divergence and Convergence [35.28490346033735]
API- and GUI-based large language models (LLMs) interact with graphical user interfaces in a human-like manner.
This paper systematically analyzes their divergence and potential convergence.
We indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents.
arXiv Detail & Related papers (2025-03-14T04:26:21Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
Large Language Model (LLM)-based agents have demonstrated remarkable success in solving complex tasks across a wide range of general-purpose applications.
However, their performance often degrades in context-specific scenarios, such as specialized industries or research domains.
To address this challenge, our work introduces a systematic approach to enhance the contextual adaptability of LLM-based agents.
arXiv Detail & Related papers (2025-02-18T15:07:06Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
We propose QLASS (Q-guided Language Agent Stepwise Search), to automatically generate annotations by estimating Q-values.
With the stepwise guidance, we propose a Q-guided generation strategy to enable language agents to better adapt to long-term value.
We empirically demonstrate that QLASS can lead to more effective decision making through qualitative analysis.
arXiv Detail & Related papers (2025-02-04T18:58:31Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.<n>G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - Turn Every Application into an Agent: Towards Efficient Human-Agent-Computer Interaction with API-First LLM-Based Agents [40.86728610906313]
AXIS is a novel LLM-based agents framework that prioritizes actions through application programming interfaces (APIs) over user interface actions.
Our experiments on Office Word demonstrate that AXIS reduces task completion time by 65%-70% and cognitive workload by 38%-53%, while maintaining accuracy of 97%-98% compare to humans.
It also explores the possibility of turning every applications into agents, paving the way towards an agent-centric operating system (Agent OS)
arXiv Detail & Related papers (2024-09-25T17:58:08Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
We propose an agent that perceives its environment solely through screenshot images.<n>By leveraging the reasoning capability of the Large Language Models, we eliminate the need for large-scale human demonstration data.<n>Agent achieves an average success rate of 94.5% on MiniWoB++ and an average task score of 62.3 on WebShop.
arXiv Detail & Related papers (2024-06-11T05:21:20Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [52.34892973785117]
Large Language Models (LLMs) have demonstrated great potential in complex reasoning tasks, yet they fall short when tackling more sophisticated challenges.<n>This inadequacy primarily stems from the lack of built-in action knowledge in language agents.<n>We introduce KnowAgent, a novel approach designed to enhance the planning capabilities of LLMs by incorporating explicit action knowledge.
arXiv Detail & Related papers (2024-03-05T16:39:12Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
Large Language Models (LLMs) exhibit robust problem-solving capabilities for diverse tasks.
These task solvers necessitate manually crafted prompts to inform task rules and regulate behaviors.
We propose Agent-Pro: an LLM-based Agent with Policy-level Reflection and Optimization.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - ASSISTGUI: Task-Oriented Desktop Graphical User Interface Automation [30.693616802332745]
This paper presents a novel benchmark, AssistGUI, to evaluate whether models are capable of manipulating the mouse and keyboard on the Windows platform in response to user-requested tasks.
We propose an advanced Actor-Critic framework, which incorporates a sophisticated GUI driven by an AI agent and adept at handling lengthy procedural tasks.
arXiv Detail & Related papers (2023-12-20T15:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.