Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
- URL: http://arxiv.org/abs/2410.04444v3
- Date: Tue, 18 Feb 2025 06:44:29 GMT
- Title: Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
- Authors: Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun Wan, William Yang Wang,
- Abstract summary: G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
- Score: 117.94654815220404
- License:
- Abstract: The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G\"odel Agent, a self-evolving framework inspired by the G\"odel machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G\"odel Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G\"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
Related papers
- AutoAgent: A Fully-Automated and Zero-Code Framework for LLM Agents [4.57755315319748]
Large Language Model (LLM) Agents have demonstrated remarkable capabilities in task automation and intelligent decision-making.
These frameworks predominantly serve developers with extensive technical expertise.
Only 0.03 % of the global population possesses the necessary programming skills.
arXiv Detail & Related papers (2025-02-09T16:53:56Z) - Free Agent in Agent-Based Mixture-of-Experts Generative AI Framework [0.0]
Reinforcement Learning Free Agent (RLFA) algorithm introduces a reward-based mechanism to detect and remove agents exhibiting persistent underperformance.
A primary use case is fraud detection, where RLFA promptly swaps out an agent whose detection accuracy dips below a preset threshold.
This dynamic, free-agency cycle ensures sustained accuracy, quicker adaptation to emerging threats, and minimal disruption to ongoing operations.
arXiv Detail & Related papers (2025-01-29T13:00:22Z) - AgentRefine: Enhancing Agent Generalization through Refinement Tuning [28.24897427451803]
Large Language Model (LLM) based agents have proved their ability to perform complex tasks like humans.
There is still a large gap between open-sourced LLMs and commercial models like the GPT series.
In this paper, we focus on improving the agent generalization capabilities of LLMs via instruction tuning.
arXiv Detail & Related papers (2025-01-03T08:55:19Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation [81.32722475387364]
Large Language Model-based agents have garnered significant attention and are becoming increasingly popular.
Planning ability is a crucial component of an LLM-based agent, which generally entails achieving a desired goal from an initial state.
Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities.
arXiv Detail & Related papers (2024-08-01T17:59:46Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm.
We show that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMs have emerged as promising tools for solving challenging problems without the need for task-specific finetuned models.
Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design.
We propose a minimalistic generation framework that simplifies the process of building agents.
arXiv Detail & Related papers (2023-10-12T17:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.