論文の概要: Experience Replay with Random Reshuffling
- arxiv url: http://arxiv.org/abs/2503.02269v1
- Date: Tue, 04 Mar 2025 04:37:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:39.792238
- Title: Experience Replay with Random Reshuffling
- Title(参考訳): ランダムリシャッフルによる経験的リプレイ
- Authors: Yasuhiro Fujita,
- Abstract要約: 教師付き学習では、データセットをエポック毎にシャッフルし、データを逐次的に消費することが一般的であり、これはランダムリシャッフル(RR)と呼ばれる。
RRをリプレイ体験に拡張するサンプリング手法を提案する。
提案手法をAtariベンチマークで評価し, 深層強化学習の有効性を実証した。
- 参考スコア(独自算出の注目度): 3.6622737533847936
- License:
- Abstract: Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning.
- Abstract(参考訳): 経験リプレイは、学習の安定化とサンプル効率の向上のための強化学習の鍵となる要素である。
その典型的な実装サンプルは、リプレイバッファから置換して遷移する。
対照的に、固定データセットによる教師付き学習では、データセットをエポック毎にシャッフルし、データをシーケンシャルに消費する、いわゆるランダムリシャッフル(RR)が一般的である。
RRは理論上より優れた収束性を持ち、置換サンプリングを経験的に上回ることが示されている。
強化学習におけるRRの利点を活用するために,RRをリプレイ体験に拡張するサンプリング手法を提案する。
我々は,Atariベンチマークにおけるサンプリング手法の評価を行い,深層強化学習の有効性を実証した。
関連論文リスト
- Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Prioritizing Samples in Reinforcement Learning with Reducible Loss [5.901819658403315]
サンプルから学べる量に基づいて,サンプルを優先順位付けする手法を提案する。
学習能力の高いサンプルを優先するアルゴリズムを開発し,学習が難しいものに優先度を低く割り当てる。
論文 参考訳(メタデータ) (2022-08-22T17:55:43Z) - Look Back When Surprised: Stabilizing Reverse Experience Replay for
Neural Approximation [7.6146285961466]
最近開発された理論上は厳格なリバース・エクスペリエンス・リプレイ(RER)について考察する。
実験を通して、様々なタスクにおけるPER(Preferd Experience Replay)のようなテクニックよりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-06-07T10:42:02Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - Replay For Safety [51.11953997546418]
経験的なリプレイでは、過去の遷移はメモリバッファに格納され、学習中に再使用される。
適切なバイアスサンプリング方式を用いることで,エファンセーフなポリシーを実現できることを示す。
論文 参考訳(メタデータ) (2021-12-08T11:10:57Z) - Convergence Results For Q-Learning With Experience Replay [51.11953997546418]
コンバージェンスレート保証を行い、リプレイの頻度や回数といった重要なパラメータによってQ-ラーニングのコンバージェンスとどのように比較されるかについて議論する。
また、シンプルなMDPのクラスを導入・分析することで、これを厳格に改善する可能性を示す理論的な証拠も提示する。
論文 参考訳(メタデータ) (2021-12-08T10:22:49Z) - Large Batch Experience Replay [22.473676537463607]
優先体験リプレイの新たな理論的基礎を紹介する。
LaBERは、リプレイバッファをサンプリングする簡単で効率的な方法である。
論文 参考訳(メタデータ) (2021-10-04T15:53:13Z) - Stratified Experience Replay: Correcting Multiplicity Bias in Off-Policy
Reinforcement Learning [17.3794999533024]
深部RLは異常なデータの存在に苦慮しているように見える。
近年の研究では、DQN(Deep Q-Network)の性能はリプレイメモリが大きすぎると劣化することが示された。
我々は,リプレイメモリ上で一様にサンプリングする動機を再検討し,関数近似を用いた場合の欠陥を見出した。
論文 参考訳(メタデータ) (2021-02-22T19:29:18Z) - Learning to Sample with Local and Global Contexts in Experience Replay
Buffer [135.94190624087355]
遷移の相対的重要性を計算できる学習に基づく新しいサンプリング手法を提案する。
本研究の枠組みは, 様々な非政治強化学習手法の性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:12:56Z) - Experience Replay with Likelihood-free Importance Weights [123.52005591531194]
本研究は,現在の政策の定常分布下での経験を生かし,その可能性に基づいて,その経験を再評価することを提案する。
提案手法は,ソフトアクタ批判 (SAC) とツイン遅延Deep Deterministic Policy gradient (TD3) の2つの競合手法に実証的に適用する。
論文 参考訳(メタデータ) (2020-06-23T17:17:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。