COMMA: Coordinate-aware Modulated Mamba Network for 3D Dispersed Vessel Segmentation
- URL: http://arxiv.org/abs/2503.02332v2
- Date: Fri, 14 Mar 2025 10:00:48 GMT
- Title: COMMA: Coordinate-aware Modulated Mamba Network for 3D Dispersed Vessel Segmentation
- Authors: Gen Shi, Hui Zhang, Jie Tian,
- Abstract summary: We introduce the Coordinate-aware Modulated Mamba Network (COMMA)<n>We contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date.<n>We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues.
- Score: 5.716698177683792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of 3D vascular structures is essential for various medical imaging applications. The dispersed nature of vascular structures leads to inherent spatial uncertainty and necessitates location awareness, yet most current 3D medical segmentation models rely on the patch-wise training strategy that usually loses this spatial context. In this study, we introduce the Coordinate-aware Modulated Mamba Network (COMMA) and contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date. COMMA leverages both entire and cropped patch data through global and local branches, ensuring robust and efficient spatial location awareness. Specifically, COMMA employs a channel-compressed Mamba (ccMamba) block to encode entire image data, capturing long-range dependencies while optimizing computational costs. Additionally, we propose a coordinate-aware modulated (CaM) block to enhance interactions between the global and local branches, allowing the local branch to better perceive spatial information. We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues. The results demonstrate COMMA's superior performance compared to state-of-the-art methods with computational efficiency, especially in segmenting small vessels. Ablation studies further highlight the importance of our proposed modules and spatial information. The code and data will be open source at https://github.com/shigen-StoneRoot/COMMA.
Related papers
- DM-SegNet: Dual-Mamba Architecture for 3D Medical Image Segmentation with Global Context Modeling [0.0]
We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding.<n>The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence.<n>Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet.
arXiv Detail & Related papers (2025-06-05T17:49:46Z) - Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing [14.0825980706386]
Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
arXiv Detail & Related papers (2024-10-20T11:08:38Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
We propose MambaClinix, a novel U-shaped architecture for medical image segmentation.
MambaClinix integrates a hierarchical gated convolutional network with Mamba in an adaptive stage-wise framework.
Our results show that MambaClinix achieves high segmentation accuracy while maintaining low model complexity.
arXiv Detail & Related papers (2024-09-19T07:51:14Z) - A Mutual Inclusion Mechanism for Precise Boundary Segmentation in Medical Images [2.9137615132901704]
We present a novel deep learning-based approach, MIPC-Net, for precise boundary segmentation in medical images.
We introduce the MIPC module, which enhances the focus on channel information when extracting position features.
We also propose the GL-MIPC-Residue, a global residual connection that enhances the integration of the encoder and decoder.
arXiv Detail & Related papers (2024-04-12T02:14:35Z) - Mamba-UNet: UNet-Like Pure Visual Mamba for Medical Image Segmentation [21.1787366866505]
We propose Mamba-UNet, a novel architecture that synergizes the U-Net in medical image segmentation with Mamba's capability.
Mamba-UNet adopts a pure Visual Mamba (VMamba)-based encoder-decoder structure, infused with skip connections to preserve spatial information across different scales of the network.
arXiv Detail & Related papers (2024-02-07T18:33:04Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
We propose an adaptive context selection based encoder-decoder framework which is composed of Local Context Attention (LCA) module, Global Context Module (GCM) and Adaptive Selection Module (ASM)
LCA modules deliver local context features from encoder layers to decoder layers, enhancing the attention to the hard region which is determined by the prediction map of previous layer.
GCM aims to further explore the global context features and send to the decoder layers. ASM is used for adaptive selection and aggregation of context features through channel-wise attention.
arXiv Detail & Related papers (2023-01-12T04:06:44Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
We propose a new network, Triple Context Network (TC-Net), with the capture of spatial contextual information as the core.
Our network is evaluated on the open dataset ATLAS, achieving the highest score of 0.594, Hausdorff distance of 27.005 mm, and average symmetry surface distance of 7.137 mm.
arXiv Detail & Related papers (2022-02-28T11:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.