Enhancing the Product Quality of the Injection Process Using eXplainable Artificial Intelligence
- URL: http://arxiv.org/abs/2503.02338v1
- Date: Tue, 04 Mar 2025 06:59:01 GMT
- Title: Enhancing the Product Quality of the Injection Process Using eXplainable Artificial Intelligence
- Authors: Jisoo Hong, Yongmin Hong, Jung-Woo Baek, Sung-Woo Kang,
- Abstract summary: This study proposes an optimal injection molding process control system to reduce the defect rate of injection molding products.<n>The main features to control the process for improving the product are extracted by SHapley Additive exPlanations.<n>To validate the methodology presented in this work, the actual injection molding AI manufacturing dataset provided by KAMP is employed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The injection molding process is a traditional technique for making products in various industries such as electronics and automobiles via solidifying liquid resin into certain molds. Although the process is not related to creating the main part of engines or semiconductors, this manufacturing methodology sets the final form of the products. Re-cently, research has continued to reduce the defect rate of the injection molding process. This study proposes an optimal injection molding process control system to reduce the defect rate of injection molding products with XAI (eXplainable Artificial Intelligence) ap-proaches. Boosting algorithms (XGBoost and LightGBM) are used as tree-based classifiers for predicting whether each product is normal or defective. The main features to control the process for improving the product are extracted by SHapley Additive exPlanations, while the individual conditional expectation analyzes the optimal control range of these extracted features. To validate the methodology presented in this work, the actual injection molding AI manufacturing dataset provided by KAMP (Korea AI Manufacturing Platform) is employed for the case study. The results reveal that the defect rate decreases from 1.00% (Original defect rate) to 0.21% with XGBoost and 0.13% with LightGBM, respectively.
Related papers
- Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data.
DSD pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs.
arXiv Detail & Related papers (2025-03-10T17:44:46Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.
We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.
The learned artifact detector is then involved in the second stage to optimize the diffusion model by providing pixel-level feedback.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
We propose a Distillation-Free One-Step Diffusion model.
Specifically, we propose a noise-aware discriminator (NAD) to participate in adversarial training.
We improve the perceptual loss with edge-aware DISTS (EA-DISTS) to enhance the model's ability to generate fine details.
arXiv Detail & Related papers (2024-10-05T16:41:36Z) - Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation [61.03530321578825]
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator.
SiD not only facilitates an exponentially fast reduction in Fr'echet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models.
arXiv Detail & Related papers (2024-04-05T12:30:19Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
We present RetroWISE, a framework that employs a base model inferred from real paired data to perform in-silico reaction generation and augmentation.
On three benchmark datasets, RetroWISE achieves the best overall performance against state-of-the-art models.
arXiv Detail & Related papers (2024-01-31T07:40:37Z) - MFRL-BI: Design of a Model-free Reinforcement Learning Process Control
Scheme by Using Bayesian Inference [5.375049126954924]
Design of process control scheme is critical for quality assurance to reduce variations in manufacturing systems.
We propose a model-free reinforcement learning (MFRL) approach to conduct experiments and optimize control simultaneously according to real-time data.
arXiv Detail & Related papers (2023-09-17T08:18:55Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
We developed a visual quality control system for mineral wool.
X-ray images of wool specimens were collected to create a training set of defective and non-defective samples.
We obtained a model with more than 98% accuracy, which in comparison to the current procedure used at the company, it can recognize 20% more defective products.
arXiv Detail & Related papers (2022-11-01T13:58:02Z) - Imbalanced Data Classification via Generative Adversarial Network with
Application to Anomaly Detection in Additive Manufacturing Process [5.225026952905702]
This paper proposes a novel data augmentation method based on a generative adversarial network (GAN) using additive manufacturing process image sensor data.
The diverse and high-quality generated samples provide balanced training data to the classifier.
The effectiveness of the proposed method is validated by both open-source data and real-world case studies in polymer and metal AM processes.
arXiv Detail & Related papers (2022-10-28T16:08:21Z) - Machine learning for automated quality control in injection moulding
manufacturing [0.0]
Machine learning (ML) may improve and automate quality control (QC) in injection moulding manufacturing.
In this study, simulated data was used to develop a predictive model for the product quality of an injection moulded sorting container.
The achieved accuracy, specificity and sensitivity on the test set was $99.4%$, $99.7%$ and $94.7%$, respectively.
arXiv Detail & Related papers (2022-06-30T13:44:48Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z) - Towards the Automation of a Chemical Sulphonation Process with Machine
Learning [0.0]
This paper presents the results of applying machine learning methods during a chemical sulphonation process.
We used data from process parameters to train different models including Random Forest, Neural Network and linear regression.
Our experiments showed that it is possible to predict those product quality values with good accuracy, thus, having the potential to reduce time.
arXiv Detail & Related papers (2020-09-25T10:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.