Measurement-Induced Crossover of Quantum Jump Statistics in Postselection-Free Many-Body Dynamics
- URL: http://arxiv.org/abs/2503.02418v1
- Date: Tue, 04 Mar 2025 09:03:40 GMT
- Title: Measurement-Induced Crossover of Quantum Jump Statistics in Postselection-Free Many-Body Dynamics
- Authors: Kazuki Yamamoto, Ryusuke Hamazaki,
- Abstract summary: We show a nontrivial crossover of subsystem fluctuations of quantum jumps in continuously monitored many-body systems.<n>While the fluctuations exhibit the standard volume law $propto L$ following Poissonian statistics for sufficiently weak measurement strength, anomalous yet universal scaling law $propto Lalpha :(alphasim 2.7)$ indicating super-Poissonian statistics appears for strong measurement strength.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We reveal a nontrivial crossover of subsystem fluctuations of quantum jumps in continuously monitored many-body systems, which have a trivial maximally mixed state as a steady-state density matrix. While the fluctuations exhibit the standard volume law $\propto L$ following Poissonian statistics for sufficiently weak measurement strength, anomalous yet universal scaling law $\propto L^\alpha \:(\alpha\sim 2.7)$ indicating super-Poissonian statistics appears for strong measurement strength. This drastically affects the precision of estimating the rate of quantum jumps: for strong (weak) measurement, the estimation uncertainty is enhanced (suppressed) as the system size increases. We demonstrate that the anomalous scaling of the subsystem fluctuation originates from an integrated many-body autocorrelation function and that the transient dynamics contributes to the scaling law rather than the Liouvillian gap. The measurement-induced crossover is accessed only from the postselection-free information obtained from the time and the position of quantum jumps and can be tested in ultracold atom experiments.
Related papers
- Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Snapshotting Quantum Dynamics at Multiple Time Points [10.226937603741474]
We propose a method to extract dynamic information from a quantum system at intermediate time points.
We reconstruct a multi-time quasi-probability distribution (QPD) that correctly recovers the probability at the respective time points.
arXiv Detail & Related papers (2022-07-13T10:28:01Z) - Measurement-Induced Power-Law Negativity in an Open Monitored Quantum
Circuit [0.0]
We show that measurements can stabilize quantum entanglement within open quantum systems.
Specifically, in random unitary circuits with dephasing at the boundary, we find both numerically and analytically that projective measurements performed at a small nonvanishing rate results in a steady state.
arXiv Detail & Related papers (2022-02-25T19:00:05Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.