論文の概要: Realizing Quantum Adversarial Defense on a Trapped-ion Quantum Processor
- arxiv url: http://arxiv.org/abs/2503.02436v1
- Date: Tue, 04 Mar 2025 09:22:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:16.006342
- Title: Realizing Quantum Adversarial Defense on a Trapped-ion Quantum Processor
- Title(参考訳): トラップイオン量子プロセッサ上での量子対向防御の実現
- Authors: Alex Jin, Tarun Dutta, Anh Tu Ngo, Anupam Chattopadhyay, Manas Mukherjee,
- Abstract要約: 我々は、イオントラップ量子プロセッサ上に、データ再ロードに基づく量子分類器を実装した。
MNISTデータセットに優れたロバスト性を示す。
- 参考スコア(独自算出の注目度): 3.1858340237924776
- License:
- Abstract: Classification is a fundamental task in machine learning, typically performed using classical models. Quantum machine learning (QML), however, offers distinct advantages, such as enhanced representational power through high-dimensional Hilbert spaces and energy-efficient reversible gate operations. Despite these theoretical benefits, the robustness of QML classifiers against adversarial attacks and inherent quantum noise remains largely under-explored. In this work, we implement a data re-uploading-based quantum classifier on an ion-trap quantum processor using a single qubit to assess its resilience under realistic conditions. We introduce a novel convolutional quantum classifier architecture leveraging data re-uploading and demonstrate its superior robustness on the MNIST dataset. Additionally, we quantify the effects of polarization noise in a realistic setting, where both bit and phase noises are present, further validating the classifier's robustness. Our findings provide insights into the practical security and reliability of quantum classifiers, bridging the gap between theoretical potential and real-world deployment.
- Abstract(参考訳): 分類は機械学習の基本的なタスクであり、典型的には古典的なモデルを用いて実行される。
しかし、量子機械学習(QML)には、高次元ヒルベルト空間による表現力の強化やエネルギー効率の良いリバーシブルゲート演算など、明確な利点がある。
これらの理論的利点にもかかわらず、QML分類器の敵対的攻撃や固有の量子ノイズに対する堅牢性は、ほとんど未探索のままである。
本研究では、単一量子ビットを用いたイオントラップ量子プロセッサ上に、データ再ロードに基づく量子分類器を実装し、現実的な条件下でのレジリエンスを評価する。
本稿では,データ再アップロードを利用した新しい畳み込み量子分類器アーキテクチャを導入し,MNISTデータセットに優れたロバスト性を示す。
さらに、ビットノイズと位相ノイズの両方が存在する現実的な環境での偏極雑音の効果を定量化し、さらに分類器の堅牢性を検証する。
本研究は,量子分類器の実用的安全性と信頼性に関する知見を提供し,理論的ポテンシャルと実世界の展開のギャップを埋めるものである。
関連論文リスト
- A learning agent-based approach to the characterization of open quantum systems [0.0]
我々は,オープンな量子モデル学習エージェント (oQMLA) フレームワークを導入し,Louvillianフォーマリズムによるマルコフ雑音を考慮した。
ハミルトン作用素とジャンプ作用素を同時に学習することにより、oQMLAは独立に系のコヒーレント力学と非コヒーレント力学の両方を捉える。
複雑化のシミュレーションシナリオにおける本実装の有効性を検証し,ハードウェアによる測定誤差に対するロバスト性を示す。
論文 参考訳(メタデータ) (2025-01-09T16:25:17Z) - Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors [1.2325897339438878]
本稿では,一クラス支援ベクトルマシン(OCSVM)アルゴリズムの一般化特性の系統的解析を行う。
結果は理論的にシミュレートされ、トラップイオンおよび超伝導量子プロセッサ上で実験的に検証された。
論文 参考訳(メタデータ) (2024-11-25T22:42:38Z) - Adversarial Robustness Guarantees for Quantum Classifiers [0.4934360430803066]
本稿では,QMLアルゴリズムの量子特性が,このような攻撃に対する基本的保護を導出できることを示す。
我々は、この保護の量子源を特定するために、多体物理学のツールを活用している。
論文 参考訳(メタデータ) (2024-05-16T18:00:01Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Deep Hedging [10.243020478772056]
我々は、深層強化学習が現実世界に強力な枠組みを提供するヘッジの問題を考察する。
我々はポリシー探索と分布型アクター批判アルゴリズムに基づく量子強化学習法を開発した。
トラップイオン量子プロセッサ上で提案したモデルの実装に成功した。
論文 参考訳(メタデータ) (2023-03-29T10:42:50Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。