A Novel Streamline-based diffusion MRI Tractography Registration Method with Probabilistic Keypoint Detection
- URL: http://arxiv.org/abs/2503.02481v1
- Date: Tue, 04 Mar 2025 10:47:10 GMT
- Title: A Novel Streamline-based diffusion MRI Tractography Registration Method with Probabilistic Keypoint Detection
- Authors: Junyi Wang, Mubai Du, Ye Wu, Yijie Li, William M. Wells III, Lauren J. O'Donnell, Fan Zhang,
- Abstract summary: We propose a novel unsupervised approach using deep learning to perform streamline-based dMRI tractography registration.<n>The overall idea is to identify corresponding keypoint pairs across subjects for spatial alignment of tractography datasets.
- Score: 9.699179134510103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Registration of diffusion MRI tractography is an essential step for analyzing group similarities and variations in the brain's white matter (WM). Streamline-based registration approaches can leverage the 3D geometric information of fiber pathways to enable spatial alignment after registration. Existing methods usually rely on the optimization of the spatial distances to identify the optimal transformation. However, such methods overlook point connectivity patterns within the streamline itself, limiting their ability to identify anatomical correspondences across tractography datasets. In this work, we propose a novel unsupervised approach using deep learning to perform streamline-based dMRI tractography registration. The overall idea is to identify corresponding keypoint pairs across subjects for spatial alignment of tractography datasets. We model tractography as point clouds to leverage the graph connectivity along streamlines. We propose a novel keypoint detection method for streamlines, framed as a probabilistic classification task to identify anatomically consistent correspondences across unstructured streamline sets. In the experiments, we compare several existing methods and show highly effective and efficient tractography registration performance.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Generalizing Segmentation Foundation Model Under Sim-to-real Domain-shift for Guidewire Segmentation in X-ray Fluoroscopy [1.4353812560047192]
Sim-to-real domain adaptation approaches utilize synthetic data from simulations, offering a cost-effective solution.
We propose a strategy to adapt SAM to X-ray fluoroscopy guidewire segmentation without any annotation on the target domain.
Our method surpasses both pre-trained SAM and many state-of-the-art domain adaptation techniques by a large margin.
arXiv Detail & Related papers (2024-10-09T21:59:48Z) - TractCloud: Registration-free tractography parcellation with a novel
local-global streamline point cloud representation [63.842881844791094]
Current tractography parcellation methods rely heavily on registration, but registration inaccuracies can affect parcellation.
We propose TractCloud, a registration-free framework that performs whole-brain tractography parcellation directly in individual subject space.
arXiv Detail & Related papers (2023-07-18T06:35:12Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
Most deep learning-based registration methods assume that the deformation fields are smooth and continuous everywhere in the image domain.
We propose a novel discontinuity-preserving image registration method to tackle this challenge, which ensures globally discontinuous and locally smooth deformation fields.
A co-attention block is proposed in the segmentation component of the network to learn the structural correlations in the input images.
We evaluate our method on the task of intra-subject-temporal image registration using large-scale cinematic cardiac magnetic resonance image sequences.
arXiv Detail & Related papers (2022-11-24T23:45:01Z) - A Hybrid Deep Feature-Based Deformable Image Registration Method for
Pathology Images [18.439134996404274]
Pathologists need to combine information from differently stained pathology slices for accurate diagnosis.
This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples.
Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034.
arXiv Detail & Related papers (2022-08-16T10:35:18Z) - Automatic Landmark Detection and Registration of Brain Cortical Surfaces
via Quasi-Conformal Geometry and Convolutional Neural Networks [17.78250777571423]
We propose a novel framework for the automatic landmark detection and registration of brain cortical surfaces.
We first develop a landmark detection network (LD-Net) that allows for the automatic extraction of landmark curves.
We then utilize the detected landmarks and quasi-conformal theory for achieving the surface registration.
arXiv Detail & Related papers (2022-08-15T05:47:51Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
We present a learning-based algorithm, Coarse-to-Fine Vision Transformer (C2FViT), for 3D affine medical image registration.
Our method is superior to the existing CNNs-based affine registration methods in terms of registration accuracy, robustness and generalizability.
arXiv Detail & Related papers (2022-03-29T03:18:43Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - GCN for HIN via Implicit Utilization of Attention and Meta-paths [104.24467864133942]
Heterogeneous information network (HIN) embedding aims to map the structure and semantic information in a HIN to distributed representations.
We propose a novel neural network method via implicitly utilizing attention and meta-paths.
We first use the multi-layer graph convolutional network (GCN) framework, which performs a discriminative aggregation at each layer.
We then give an effective relaxation and improvement via introducing a new propagation operation which can be separated from aggregation.
arXiv Detail & Related papers (2020-07-06T11:09:40Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.