A Systematic Literature Review on Safety of the Intended Functionality for Automated Driving Systems
- URL: http://arxiv.org/abs/2503.02498v1
- Date: Tue, 04 Mar 2025 11:04:36 GMT
- Title: A Systematic Literature Review on Safety of the Intended Functionality for Automated Driving Systems
- Authors: Milin Patel, Rolf Jung, Marzana Khatun,
- Abstract summary: Automated driving depends on sensing both the external and internal environments of a vehicle.<n> ISO 21448 is the standard for Safety of the Intended Functionality (SOTIF) that aims to ensure that the ADS operate safely within their intended functionality.<n>The challenge lies in ensuring the safety of vehicles despite the limited availability of extensive and systematic literature on SOTIF.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the automobile industry, ensuring the safety of automated vehicles equipped with the Automated Driving System (ADS) is becoming a significant focus due to the increasing development and deployment of automated driving. Automated driving depends on sensing both the external and internal environments of a vehicle, utilizing perception sensors and algorithms, and Electrical/Electronic (E/E) systems for situational awareness and response. ISO 21448 is the standard for Safety of the Intended Functionality (SOTIF) that aims to ensure that the ADS operate safely within their intended functionality. SOTIF focuses on preventing or mitigating potential hazards that may arise from the limitations or failures of the ADS, including hazards due to insufficiencies of specification, or performance insufficiencies, as well as foreseeable misuse of the intended functionality. However, the challenge lies in ensuring the safety of vehicles despite the limited availability of extensive and systematic literature on SOTIF. To address this challenge, a Systematic Literature Review (SLR) on SOTIF for the ADS is performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The objective is to methodically gather and analyze the existing literature on SOTIF. The major contributions of this paper are: (i) presenting a summary of the literature by synthesizing and organizing the collective findings, methodologies, and insights into distinct thematic groups, and (ii) summarizing and categorizing the acknowledged limitations based on data extracted from an SLR of 51 research papers published between 2018 and 2023. Furthermore, research gaps are determined, and future research directions are proposed.
Related papers
- A Method for the Runtime Validation of AI-based Environment Perception in Automated Driving System [2.369782235753731]
Environment perception is a fundamental part of the dynamic driving task executed by Autonomous Driving Systems.<n>Current safety-relevant standards for automotive systems assume the existence of comprehensive requirements specifications.<n>This paper presents a function monitor for the functional runtime monitoring of a two-folded AI-based environment perception for ADS.
arXiv Detail & Related papers (2024-12-21T20:21:49Z) - Characterization and Mitigation of Insufficiencies in Automated Driving Systems [0.5842419815638352]
Automated Driving (AD) systems have the potential to increase safety, comfort and energy efficiency.
The commercial deployment and wide adoption of ADS have been moderate, partially due to system functional insufficiencies (FI) that undermine passenger safety and lead to hazardous situations on the road.
This study aims to formulate a generic architectural design pattern to improve FI mitigation and enable faster commercial deployment of ADS.
arXiv Detail & Related papers (2024-04-15T08:19:13Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
This paper defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model.
Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models.
arXiv Detail & Related papers (2023-12-15T06:34:35Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Finding Critical Scenarios for Automated Driving Systems: A Systematic
Literature Review [20.926088145784604]
We present the results of a systematic literature review in the context of autonomous driving.
We introduce a comprehensive taxonomy for critical scenario identification methods.
We also give an overview of the state-of-the-art research based on the taxonomy encompassing 86 papers between 2017 and 2020.
arXiv Detail & Related papers (2021-10-16T21:24:19Z) - Robustness Enhancement of Object Detection in Advanced Driver Assistance
Systems (ADAS) [0.0]
The proposed system includes two main components: (1) a compact one-stage object detector which is expected to be able to perform at a comparable accuracy compared to state-of-the-art object detectors, and (2) an environmental condition detector that helps to send a warning signal to the cloud in case the self-driving car needs human actions due to the significance of the situation.
arXiv Detail & Related papers (2021-05-04T15:42:43Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020 requested that research paper submissions include impact statements on "potential nefarious uses and the consequences of failure"
We argue that frameworks of harms must be context-aware and consider a wider range of potential stakeholders, system affordances, as well as viable proxies for assessing harms in the widest sense.
arXiv Detail & Related papers (2020-11-26T18:09:52Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.