論文の概要: Deepfake Detection via Knowledge Injection
- arxiv url: http://arxiv.org/abs/2503.02503v1
- Date: Tue, 04 Mar 2025 11:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:50.182560
- Title: Deepfake Detection via Knowledge Injection
- Title(参考訳): 知識注入によるディープフェイク検出
- Authors: Tonghui Li, Yuanfang Guo, Zeming Liu, Heqi Peng, Yunhong Wang,
- Abstract要約: 既存のディープフェイク検出手法は、実際のデータ知識の本質的な役割を見逃す傾向がある。
知識注入モジュールは、バックボーンモデルに必要な知識を学習し、注入するために提案される。
知識注入モジュールにおける実データの知識を強調するために,2つのレイヤワイド抑制とコントラスト損失を提案する。
- 参考スコア(独自算出の注目度): 35.95604525443886
- License:
- Abstract: Deepfake detection technologies become vital because current generative AI models can generate realistic deepfakes, which may be utilized in malicious purposes. Existing deepfake detection methods either rely on developing classification methods to better fit the distributions of the training data, or exploiting forgery synthesis mechanisms to learn a more comprehensive forgery distribution. Unfortunately, these methods tend to overlook the essential role of real data knowledge, which limits their generalization ability in processing the unseen real and fake data. To tackle these challenges, in this paper, we propose a simple and novel approach, named Knowledge Injection based deepfake Detection (KID), by constructing a multi-task learning based knowledge injection framework, which can be easily plugged into existing ViT-based backbone models, including foundation models. Specifically, a knowledge injection module is proposed to learn and inject necessary knowledge into the backbone model, to achieve a more accurate modeling of the distributions of real and fake data. A coarse-grained forgery localization branch is constructed to learn the forgery locations in a multi-task learning manner, to enrich the learned forgery knowledge for the knowledge injection module. Two layer-wise suppression and contrast losses are proposed to emphasize the knowledge of real data in the knowledge injection module, to further balance the portions of the real and fake knowledge. Extensive experiments have demonstrated that our KID possesses excellent compatibility with different scales of Vit-based backbone models, and achieves state-of-the-art generalization performance while enhancing the training convergence speed.
- Abstract(参考訳): ディープフェイク検出技術は、現在の生成AIモデルが現実的なディープフェイクを生成できるため、重要になる。
既存のディープフェイク検出手法は、トレーニングデータの分布をよりよく適合させる分類法の開発に依存するか、より包括的なフォージェリー分布を学ぶためにフォージェリー合成機構を利用するかのいずれかである。
残念なことに、これらの手法は実際のデータ知識の本質的な役割を見逃しがちである。
このような課題に対処するため,本論文では,基礎モデルを含む既存のViTベースバックボーンモデルに容易にプラグイン可能な,マルチタスク学習に基づく知識注入フレームワークを構築することにより,知識注入に基づくディープラーニング検出(KID)という,シンプルで斬新なアプローチを提案する。
具体的には、実データと偽データの分布のより正確なモデリングを実現するために、バックボーンモデルに必要な知識を学習し、注入するための知識注入モジュールを提案する。
多タスク学習方式で偽地を学習し、知識注入モジュールの学習された偽地知識を充実させるために、粗粒フォージェリーローカライゼーション部を構築する。
知識注入モジュールにおける実データの知識を強調するために,2つのレイヤワイド抑制とコントラスト損失を提案し,実際の知識と偽の知識のバランスを更に高めている。
広汎な実験により、我々のKIDは、Vitベースのバックボーンモデルの異なるスケールとの互換性に優れており、トレーニング収束速度を向上しつつ、最先端の一般化性能を実現することが示されている。
関連論文リスト
- What Really Matters for Learning-based LiDAR-Camera Calibration [50.2608502974106]
本稿では,学習に基づくLiDAR-Cameraキャリブレーションの開発を再考する。
我々は、広く使われているデータ生成パイプラインによる回帰ベースの手法の限界を識別する。
また,入力データ形式と前処理操作がネットワーク性能に与える影響についても検討する。
論文 参考訳(メタデータ) (2025-01-28T14:12:32Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
拡散モデルの生成能力とCLIPの強力な特徴抽出能力を活用する新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:55:25Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Plug-and-Play Knowledge Injection for Pre-trained Language Models [116.37916535076478]
外部知識を注入することで、様々な下流NLPタスクにおける事前学習言語モデル(PLM)の性能を向上させることができる。
下流タスクのための新しい知識注入方法や知識ベースを展開するには、大規模な再訓練が必要である。
既存の下流モデルを用いて知識注入の柔軟性と効率を改善する方法について検討する。
論文 参考訳(メタデータ) (2023-05-28T10:58:00Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
本稿では,新しい認知アーキテクチャに基づくカンチレバービームの損傷検出のためのニューロシンボリックモデルを提案する。
ハイブリッド識別モデルはLogic Convolutional Neural Regressorという名称で導入されている。
論文 参考訳(メタデータ) (2023-05-04T13:12:39Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - FReTAL: Generalizing Deepfake Detection using Knowledge Distillation and
Representation Learning [17.97648576135166]
本稿では,FreTAL(Feature Representation Transfer Adaptation Learning)法を提案する。
我々の学生モデルは、事前学習した教師モデルから知識を抽出することで、新しいタイプのディープフェイクに迅速に適応することができる。
FRETALは、ドメイン適応タスクのすべてのベースラインを86.97%の精度で低品質のディープフェイクで上回っている。
論文 参考訳(メタデータ) (2021-05-28T06:54:10Z) - Neural Architecture Search For Fault Diagnosis [6.226564415963648]
ディープラーニングはビッグデータ処理に適しており、エンドツーエンドの故障診断システムを実現する強力な特徴抽出機能を備えている。
ニューラルアーキテクチャサーチ(NAS)は急速に発展しており、ディープラーニングの次の方向性の1つになりつつある。
本稿では,補強学習を用いたNAS法による断層診断手法を提案する。
論文 参考訳(メタデータ) (2020-02-19T04:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。