論文の概要: OkraLong: A Flexible Retrieval-Augmented Framework for Long-Text Query Processing
- arxiv url: http://arxiv.org/abs/2503.02603v1
- Date: Tue, 04 Mar 2025 13:21:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 18:50:39.55264
- Title: OkraLong: A Flexible Retrieval-Augmented Framework for Long-Text Query Processing
- Title(参考訳): OkraLong: 長文クエリ処理のための柔軟な検索拡張フレームワーク
- Authors: Yulong Hui, Yihao Liu, Yao Lu, Huanchen Zhang,
- Abstract要約: LLM(Large Language Models)は、長文クエリを効率的に処理する際の課題である。
我々は,処理ワークフロー全体を柔軟に最適化する新しいフレームワークであるOkraLongを提案する。
OkraLongは回答の正確性を高めるだけでなく、さまざまなデータセットで費用対効果を達成する。
- 参考スコア(独自算出の注目度): 9.606858192855753
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) encounter challenges in efficiently processing long-text queries, as seen in applications like enterprise document analysis and financial report comprehension. While conventional solutions employ long-context processing or Retrieval-Augmented Generation (RAG), they suffer from prohibitive input expenses or incomplete information. Recent advancements adopt context compression and dynamic retrieval loops, but still sacrifice critical details or incur iterative costs.To address these limitations, we propose OkraLong, a novel framework that flexibly optimizes the entire processing workflow. Unlike prior static or coarse-grained adaptive strategies, OkraLong adopts fine-grained orchestration through three synergistic components: analyzer, organizer and executor. The analyzer characterizes the task states, which guide the organizer in dynamically scheduling the workflow. The executor carries out the execution and generates the final answer. Experimental results demonstrate that OkraLong not only enhances answer accuracy but also achieves cost-effectiveness across a variety of datasets.
- Abstract(参考訳): 大規模言語モデル(LLM)は、エンタープライズ文書分析や財務報告の理解といったアプリケーションで見られるように、ロングテキストクエリを効率的に処理する際の課題に直面する。
従来のソリューションでは、ロングコンテキスト処理やRAG(Retrieval-Augmented Generation)を採用しているが、禁止的な入力費用や不完全な情報に悩まされている。
最近の進歩はコンテキスト圧縮と動的検索ループを採用しているが、それでも重要な詳細を犠牲にしたり、反復的なコストを犠牲にしている。これらの制限に対処するため、我々はOkraLongを提案する。OkraLongは、処理ワークフロー全体を柔軟に最適化する新しいフレームワークである。
従来の静的あるいは粗粒の適応戦略とは異なり、OkraLongはアナライザ、オーガナイザ、エグゼキュータという3つの相乗的なコンポーネントを通じて、きめ細かいオーケストレーションを採用する。
アナライザは、ワークフローを動的にスケジューリングする上で、オーガナイザをガイドするタスクステートを特徴付ける。
実行者は実行を実行し、最終回答を生成する。
実験結果から,OkraLongは解答精度を向上するだけでなく,さまざまなデータセットのコスト効率も向上することが示された。
関連論文リスト
- PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention [73.26995918610669]
大きな言語モデル(LLM)は、長いコンテキストを処理する場合の注意機構の二次的な複雑さによって、効率のボトルネックに直面します。
本稿では,効果的かつ完全なコンテキスト拡張を容易にする新しいスパークアテンション設計であるPowerAttentionを紹介する。
実験によると、PowerAttentionは既存の静的スパースアテンションメソッドを5sim 40%$で上回っている。
論文 参考訳(メタデータ) (2025-03-05T15:24:11Z) - WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale [86.25450054683172]
WildLongは、実際のユーザクエリからメタ情報を取り出して、スケーラブルなデータを生成する。
クロスドキュメント比較やアグリゲーションといったマルチドキュメント推論をサポートする。
ベンチマーク全体で、既存のオープンソースの長期コンテキスト最適化モデルを上回っている。
論文 参考訳(メタデータ) (2025-02-23T18:59:09Z) - Emulating Retrieval Augmented Generation via Prompt Engineering for Enhanced Long Context Comprehension in LLMs [23.960451986662996]
本稿では,レトリーバル拡張生成(RAG)を特殊エンジニアリングとチェーンオブ思考推論によりエミュレートする手法を提案する。
我々は,BABILong から選択したタスクに対するアプローチを評価し,大量の散逸テキストを用いた標準 bAbI QA 問題をインターリーブする。
論文 参考訳(メタデータ) (2025-02-18T02:49:40Z) - Does RAG Really Perform Bad For Long-Context Processing? [15.889864680212147]
RetroLMは長文処理のための新しいフレームワークである。
従来の方法とは異なり、RetroLMはKVレベルの検索拡張を採用している。
この枠組みに基づいて,臨界ページの正確な検索を行うための特殊検索器を開発した。
論文 参考訳(メタデータ) (2025-02-17T05:02:25Z) - LCIRC: A Recurrent Compression Approach for Efficient Long-form Context and Query Dependent Modeling in LLMs [10.84210988032097]
本稿では,長文列をモデルの長さ制限を超えて効率的に処理できるLCIRC(Long-form Context Injection with Recurrent Compression)を提案する。
また、クエリ依存コンテキストモデリングを導入し、クエリ関連情報を選択的に圧縮し、モデルが最も関連するコンテンツを保持することを保証する。
論文 参考訳(メタデータ) (2025-02-10T04:02:18Z) - Efficient Long Context Language Model Retrieval with Compression [57.09163579304332]
情報検索のための新しいパラダイムとしてLong Context Language Models (LCLM)が登場した。
本稿では,LCLM検索に適した新しい圧縮手法を提案する。
また,CoLoRはテキスト内サイズを1.91倍に圧縮し,検索性能を6%向上することを示した。
論文 参考訳(メタデータ) (2024-12-24T07:30:55Z) - Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data [6.195658947075431]
HoloBenchは、テキストベースのコンテキストにデータベース推論操作をもたらすフレームワークです。
本研究では,文脈内の情報量が文脈長よりもLCLMの性能に大きく影響していることを示す。
複数の情報の集約を必要とするタスクは、コンテキスト長が増加するにつれて顕著な精度低下を示す。
論文 参考訳(メタデータ) (2024-10-15T19:04:13Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models [58.08177466768262]
大規模言語モデル(LLM)では、複雑なロングコンテクストのタスクに対処するためには、ロングコンテクストの能力が不可欠である。
グラフをグラフに構造化し、エージェントを使ってグラフを自律的に探索することで、長いテキストを扱うように設計されたグラフベースのエージェントシステムであるGraphReaderを紹介する。
LV-Evalデータセットの実験結果によると、GraphReaderは4kコンテキストウィンドウを使用して、16kから256kまでのコンテキスト長で一貫してGPT-4-128kを上回っている。
論文 参考訳(メタデータ) (2024-06-20T17:57:51Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
最大32,768個のトークンの効率的なコンテキストウィンドウをサポートする長文LLMを提示する。
我々のモデルは、ほとんどの通常のタスクにおいて一貫した改善を達成し、Llama 2よりも長いコンテキストタスクを大幅に改善します。
論文 参考訳(メタデータ) (2023-09-27T21:41:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。