論文の概要: XFMamba: Cross-Fusion Mamba for Multi-View Medical Image Classification
- arxiv url: http://arxiv.org/abs/2503.02619v1
- Date: Tue, 04 Mar 2025 13:38:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:17:44.067386
- Title: XFMamba: Cross-Fusion Mamba for Multi-View Medical Image Classification
- Title(参考訳): XFMamba:マルチビュー医療画像分類のためのクロスフュージョン・マンバ
- Authors: Xiaoyu Zheng, Xu Chen, Shaogang Gong, Xavier Griffin, Greg Slabaugh,
- Abstract要約: XFMambaは、マルチビュー医療画像分類の課題を解決するために、純粋なマンバベースのクロスフュージョンアーキテクチャである。
XFMambaは、新しい2段階融合戦略を導入し、シングルビューの特徴の学習と、それらの相互ビューの相違を容易にする。
その結果、既存の畳み込みベースおよびトランスフォーマーベースのマルチビュー手法よりも優れた結果が得られた。
- 参考スコア(独自算出の注目度): 31.897467054280504
- License:
- Abstract: Compared to single view medical image classification, using multiple views can significantly enhance predictive accuracy as it can account for the complementarity of each view while leveraging correlations between views. Existing multi-view approaches typically employ separate convolutional or transformer branches combined with simplistic feature fusion strategies. However, these approaches inadvertently disregard essential cross-view correlations, leading to suboptimal classification performance, and suffer from challenges with limited receptive field (CNNs) or quadratic computational complexity (transformers). Inspired by state space sequence models, we propose XFMamba, a pure Mamba-based cross-fusion architecture to address the challenge of multi-view medical image classification. XFMamba introduces a novel two-stage fusion strategy, facilitating the learning of single-view features and their cross-view disparity. This mechanism captures spatially long-range dependencies in each view while enhancing seamless information transfer between views. Results on three public datasets, MURA, CheXpert and DDSM, illustrate the effectiveness of our approach across diverse multi-view medical image classification tasks, showing that it outperforms existing convolution-based and transformer-based multi-view methods. Code is available at https://github.com/XZheng0427/XFMamba.
- Abstract(参考訳): 単一ビューの医用画像分類と比較して、複数のビューを用いた場合、ビュー間の相関を生かしながら、各ビューの相補性を考慮し、予測精度を著しく向上させることができる。
既存のマルチビューアプローチでは、通常、分離された畳み込みまたはトランスフォーマーブランチと単純な特徴融合戦略を併用する。
しかし、これらのアプローチは必然的に重要なクロスビュー相関を無視し、最適以下の分類性能をもたらし、限定受容場(CNN)や二次計算複雑性(変換器)の課題に悩まされる。
状態空間列モデルに着想を得たXFMambaは,マルチビュー医用画像分類の課題に対処するために,純粋なマンバをベースとしたクロスフュージョンアーキテクチャである。
XFMambaは、新しい2段階融合戦略を導入し、シングルビューの特徴の学習と、それらの相互ビューの相違を容易にする。
このメカニズムは、ビュー間のシームレスな情報伝達を強化しながら、各ビューにおける空間的長距離依存性をキャプチャする。
mura, CheXpert, DDSMの3つの公開データセットの結果は, 多様な多視点医療画像分類タスクにおけるアプローチの有効性を示し, 既存の畳み込みベースおよびトランスフォーマーベースのマルチビュー手法よりも優れていることを示した。
コードはhttps://github.com/XZheng0427/XFMamba.comで入手できる。
関連論文リスト
- MV-Swin-T: Mammogram Classification with Multi-view Swin Transformer [0.257133335028485]
マンモグラフィ画像分類における課題に対処するために,トランスフォーマーに基づく革新的なマルチビューネットワークを提案する。
提案手法では,ウィンドウベースの動的アテンションブロックを導入し,マルチビュー情報の効果的な統合を容易にする。
論文 参考訳(メタデータ) (2024-02-26T04:41:04Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
ドメイン転送ネットワーク(C2M-DoT)を用いたクロスモーダルなマルチビュー医療レポート生成を提案する。
C2M-DoTは、すべてのメトリクスで最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2023-10-09T02:31:36Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
マルチビュークラスタリングのための新しいデュアルコントラストキャリブレーションネットワーク(DealMVC)を提案する。
まず、グローバルなクロスビュー特徴を得るための融合機構を設計し、その上で、ビュー特徴類似性グラフと高信頼な擬ラベルグラフを整列させることにより、グローバルなコントラストキャリブレーション損失を提案する。
トレーニング手順の間、対話型クロスビュー機能は、ローカルレベルとグローバルレベルの両方で共同最適化される。
論文 参考訳(メタデータ) (2023-08-17T14:14:28Z) - CheXFusion: Effective Fusion of Multi-View Features using Transformers
for Long-Tailed Chest X-Ray Classification [4.708378681950648]
本稿では,ICCV CVAMD 2023 Shared Task on CXR-LT: Multi-Label Long-Tailed Classification on Chest X-raysについて述べる。
提案手法では,マルチビューイメージを取り入れたトランスフォーマーベースの融合モジュールであるCheXFusionを導入する。
提案手法はMIMIC-CXRテストセットにおいて0.372 mAPで最先端の結果を達成し,競争において第1位を確保した。
論文 参考訳(メタデータ) (2023-08-08T00:46:01Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Netは、FS-FGアクション認識のためのマッチングベースのフレームワークである。
textitmulti-view エンコーディング、textitmulti-view matching、textitmulti-view fusion を組み込んで、埋め込みエンコーディング、類似性マッチング、意思決定を容易にする。
説明可能な可視化と実験結果により,M$3$Netの微細な動作の詳細を捉える上での優位性が示された。
論文 参考訳(メタデータ) (2023-08-06T09:15:14Z) - Multi-Spectral Image Stitching via Spatial Graph Reasoning [52.27796682972484]
空間グラフ推論に基づくマルチスペクトル画像縫合法を提案する。
同一のビュー位置から複数スケールの補完機能をノードに埋め込む。
空間的・チャネル的次元に沿った長距離コヒーレンスを導入することにより、画素関係の相補性とチャネル相互依存性は、整列したマルチビュー特徴の再構築に寄与する。
論文 参考訳(メタデータ) (2023-07-31T15:04:52Z) - MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion [4.36488705757229]
多視点表現学習は、クラスタリングや分類といった多くの多視点タスクに不可欠である。
ラベルのないデータから堅牢なビュー-共通表現を抽出するハイブリッドコントラスト融合アルゴリズムを提案する。
実験の結果,提案手法は実世界の4つのデータセットにおいて,12の競合的マルチビュー手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-26T09:58:37Z) - Fast Multi-view Clustering via Ensembles: Towards Scalability,
Superiority, and Simplicity [63.85428043085567]
本稿では,アンサンブル(FastMICE)アプローチによる高速なマルチビュークラスタリングを提案する。
ランダムなビュー群の概念は、多目的なビューワイズ関係を捉えるために提示される。
FastMICEは、ほぼ線形時間と空間の複雑さを持ち、データセット固有のチューニングは不要である。
論文 参考訳(メタデータ) (2022-03-22T09:51:24Z) - TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation
with Transformers [8.139069987207494]
コンボリューション層と強力なアテンション機構を用いた多視点画像情報をマージするトランスフォーマーベースのアーキテクチャであるTransFusionを提案する。
特に、ディバージェント・フュージョン・アテンション(DiFA)モジュールは、リッチ・クロスビュー・コンテキスト・モデリングとセマンティック・インテリジェンス・マイニングのために提案されている。
論文 参考訳(メタデータ) (2022-03-21T04:02:54Z) - Deep Class-Specific Affinity-Guided Convolutional Network for Multimodal
Unpaired Image Segmentation [7.021001169318551]
マルチモーダル医療イメージセグメンテーションは、臨床診断に不可欠な役割を担います。
入力モダリティはしばしば空間的に整列していないため、依然として困難である。
マルチモーダル画像分割のための親和性誘導完全畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-01-05T13:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。