Leveraging Self-Supervised Learning Methods for Remote Screening of Subjects with Paroxysmal Atrial Fibrillation
- URL: http://arxiv.org/abs/2503.02621v1
- Date: Tue, 04 Mar 2025 13:42:38 GMT
- Title: Leveraging Self-Supervised Learning Methods for Remote Screening of Subjects with Paroxysmal Atrial Fibrillation
- Authors: Adrian Atienza, Gouthamaan Manimaran, Sadasivan Puthusserypady, Helena Dominguez, Peter K. Jacobsen, Jakob E. Bardram,
- Abstract summary: This study explores the application of Self-Supervised Learning (SSL) as a way to obtain preliminary results from clinical studies with limited cohorts.<n>We focus on an underexplored clinical task: screening subjects for Paroxysmal Atrial Fibrillation (P-AF) using remote monitoring, single-lead ECG signals captured during normal sinus rhythm.<n>We evaluate state-of-the-art SSL methods alongside supervised learning approaches, where SSL outperforms supervised learning in this task of interest.
- Score: 6.158210490716697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Artificial Intelligence (AI) into clinical research has great potential to reveal patterns that are difficult for humans to detect, creating impactful connections between inputs and clinical outcomes. However, these methods often require large amounts of labeled data, which can be difficult to obtain in healthcare due to strict privacy laws and the need for experts to annotate data. This requirement creates a bottleneck when investigating unexplored clinical questions. This study explores the application of Self-Supervised Learning (SSL) as a way to obtain preliminary results from clinical studies with limited sized cohorts. To assess our approach, we focus on an underexplored clinical task: screening subjects for Paroxysmal Atrial Fibrillation (P-AF) using remote monitoring, single-lead ECG signals captured during normal sinus rhythm. We evaluate state-of-the-art SSL methods alongside supervised learning approaches, where SSL outperforms supervised learning in this task of interest. More importantly, it prevents misleading conclusions that may arise from poor performance in the latter paradigm when dealing with limited cohort settings.
Related papers
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
This study presents a novel semi-supervised approach for ASD detection using AutoEncoder-based Machine Learning (ML) methods.
Our approach utilizes data collected manually through a serious game specifically designed for this purpose.
Since the sensitive data collected by the gamified application are susceptible to privacy leakage, we developed a Federated Learning framework.
arXiv Detail & Related papers (2024-10-25T23:00:12Z) - Self-Supervised Multiple Instance Learning for Acute Myeloid Leukemia Classification [1.1874560263468232]
Diseases like Acute Myeloid Leukemia (AML) pose challenges due to scarce and costly annotations on a single-cell level.
Multiple Instance Learning (MIL) addresses weakly labeled scenarios but necessitates powerful encoders typically trained with labeled data.
In this study, we explore Self-Supervised Learning (SSL) as a pre-training approach for MIL-based subtype AML classification from blood smears.
arXiv Detail & Related papers (2024-03-08T15:16:15Z) - Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures [0.8132630541462695]
In this study, we leverage federated learning strategies to address clopidogrel treatment failure detection.
We partitioned the data based on geographic centers and evaluated the performance of federated learning.
Our findings underscore the potential of federated learning in addressing clopidogrel treatment failure detection.
arXiv Detail & Related papers (2024-03-05T23:31:07Z) - From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models [21.427976533706737]
We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
arXiv Detail & Related papers (2023-11-21T23:53:27Z) - Scaling Clinical Trial Matching Using Large Language Models: A Case
Study in Oncology [17.214664001970526]
We conduct a systematic study on scaling clinical trial matching using large language models (LLMs)
Our study is grounded in a clinical trial matching system currently in test deployment at a large U.S. health network.
arXiv Detail & Related papers (2023-08-04T07:51:15Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.