From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models
- URL: http://arxiv.org/abs/2311.13063v3
- Date: Sat, 24 Aug 2024 03:48:01 GMT
- Title: From Classification to Clinical Insights: Towards Analyzing and Reasoning About Mobile and Behavioral Health Data With Large Language Models
- Authors: Zachary Englhardt, Chengqian Ma, Margaret E. Morris, Xuhai "Orson" Xu, Chun-Cheng Chang, Lianhui Qin, Daniel McDuff, Xin Liu, Shwetak Patel, Vikram Iyer,
- Abstract summary: We take a novel approach that leverages large language models to synthesize clinically useful insights from multi-sensor data.
We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data relate to conditions like depression and anxiety.
We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
- Score: 21.427976533706737
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Passively collected behavioral health data from ubiquitous sensors holds significant promise to provide mental health professionals insights from patient's daily lives; however, developing analysis tools to use this data in clinical practice requires addressing challenges of generalization across devices and weak or ambiguous correlations between the measured signals and an individual's mental health. To address these challenges, we take a novel approach that leverages large language models (LLMs) to synthesize clinically useful insights from multi-sensor data. We develop chain of thought prompting methods that use LLMs to generate reasoning about how trends in data such as step count and sleep relate to conditions like depression and anxiety. We first demonstrate binary depression classification with LLMs achieving accuracies of 61.1% which exceed the state of the art. While it is not robust for clinical use, this leads us to our key finding: even more impactful and valued than classification is a new human-AI collaboration approach in which clinician experts interactively query these tools and combine their domain expertise and context about the patient with AI generated reasoning to support clinical decision-making. We find models like GPT-4 correctly reference numerical data 75% of the time, and clinician participants express strong interest in using this approach to interpret self-tracking data.
Related papers
- Integrating Generative Artificial Intelligence in ADRD: A Framework for Streamlining Diagnosis and Care in Neurodegenerative Diseases [0.0]
We propose that large language models (LLMs) offer more immediately practical applications by enhancing clinicians' capabilities.
We present a framework for responsible AI integration that leverages LLMs' ability to communicate effectively with both patients and providers.
This approach prioritizes standardized, high-quality data collection to enable a system that learns from every patient encounter.
arXiv Detail & Related papers (2025-02-06T19:09:11Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.
Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.
Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.
We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.
Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - PALLM: Evaluating and Enhancing PALLiative Care Conversations with Large Language Models [10.258261180305439]
Large language models (LLMs) offer a new approach to assessing complex communication metrics.
LLMs offer the potential to advance the field through integration into passive sensing and just-in-time intervention systems.
This study explores LLMs as evaluators of palliative care communication quality, leveraging their linguistic, in-context learning, and reasoning capabilities.
arXiv Detail & Related papers (2024-09-23T16:39:12Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
We introduce a new task of automatically generating lay definitions, aiming to simplify medical terms into patient-friendly lay language.
We first created the dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions.
We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality.
arXiv Detail & Related papers (2023-12-24T23:01:00Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Enabling scalable clinical interpretation of ML-based phenotypes using
real world data [0.0]
This study investigates approaches to perform patient stratification analysis at scale using large EHR datasets.
We have developed several tools to facilitate the clinical evaluation and interpretation of unsupervised patient stratification results.
arXiv Detail & Related papers (2022-08-02T17:31:03Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.