10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
- URL: http://arxiv.org/abs/2503.02662v2
- Date: Mon, 10 Mar 2025 12:26:22 GMT
- Title: 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
- Authors: Biqiao Xin, Qianchen Mao, Bingshu Wang, Jiangbin Zheng, Yong Zhao, C. L. Philip Chen,
- Abstract summary: Binarized neural networks (BNNs) are distinguished by their exceptional efficiency in model compression.<n>We propose the Binarized Infrared Small-Target Detection Network (BiisNet)<n>BiisNet preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow.
- Score: 48.074211420276605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread deployment of Infrared Small-Target Detection (IRSTD) algorithms on edge devices necessitates the exploration of model compression techniques. Binarized neural networks (BNNs) are distinguished by their exceptional efficiency in model compression. However, the small size of infrared targets introduces stringent precision requirements for the IRSTD task, while the inherent precision loss during binarization presents a significant challenge. To address this, we propose the Binarized Infrared Small-Target Detection Network (BiisNet), which preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow. Specifically, we propose the Dot Binary Convolution, which retains fine-grained semantic information in feature maps while still leveraging the binarized convolution operations. In addition, we introduce a smooth and adaptive Dynamic Softsign function, which provides more comprehensive and progressively finer gradient during backpropagation, enhancing model stability and promoting an optimal weight distribution. Experimental results demonstrate that BiisNet not only significantly outperforms other binary architectures but also has strong competitiveness among state-of-the-art full-precision models.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - BiHRNet: A Binary high-resolution network for Human Pose Estimation [11.250422970707415]
We propose a binary human pose estimator named BiHRNet, whose weights and activations are expressed as $pm$1.
BiHRNet retains the keypoint extraction ability of HRNet, while using fewer computing resources by adapting binary neural network (BNN)
We show BiHRNet achieves a PCKh of 87.9 on the MPII dataset, which outperforms all binary pose estimation networks.
arXiv Detail & Related papers (2023-11-17T03:01:37Z) - EFLNet: Enhancing Feature Learning for Infrared Small Target Detection [20.546186772828555]
Single-frame infrared small target detection is considered to be a challenging task.
Due to the extreme imbalance between target and background, bounding box regression is extremely sensitive to infrared small target.
We propose an enhancing feature learning network (EFLNet) to address these problems.
arXiv Detail & Related papers (2023-07-27T09:23:22Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications.
We present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance.
We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
arXiv Detail & Related papers (2022-11-13T18:31:45Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMN is an accurate and extreme-efficient binary neural network for KWS.
We show that BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware.
arXiv Detail & Related papers (2022-02-14T05:16:53Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.