VWAP Execution with Signature-Enhanced Transformers: A Multi-Asset Learning Approach
- URL: http://arxiv.org/abs/2503.02680v1
- Date: Tue, 04 Mar 2025 14:50:20 GMT
- Title: VWAP Execution with Signature-Enhanced Transformers: A Multi-Asset Learning Approach
- Authors: Remi Genet,
- Abstract summary: I propose a novel approach to Volume Weighted Average Price (VWAP) execution.<n>I demonstrate that a single neural network trained across multiple assets can achieve performance comparable to or better than traditional asset-specific models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper I propose a novel approach to Volume Weighted Average Price (VWAP) execution that addresses two key practical challenges: the need for asset-specific model training and the capture of complex temporal dependencies. Building upon my recent work in dynamic VWAP execution arXiv:2502.18177, I demonstrate that a single neural network trained across multiple assets can achieve performance comparable to or better than traditional asset-specific models. The proposed architecture combines a transformer-based design inspired by arXiv:2406.02486 with path signatures for capturing geometric features of price-volume trajectories, as in arXiv:2406.17890. The empirical analysis, conducted on hourly cryptocurrency trading data from 80 trading pairs, shows that the globally-fitted model with signature features (GFT-Sig) achieves superior performance in both absolute and quadratic VWAP loss metrics compared to asset-specific approaches. Notably, these improvements persist for out-of-sample assets, demonstrating the model's ability to generalize across different market conditions. The results suggest that combining global parameter sharing with signature-based feature extraction provides a scalable and robust approach to VWAP execution, offering significant practical advantages over traditional asset-specific implementations.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models [64.18350535770357]
We propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning.
Our approach only leverages a small number of samples to search for the desired pruning policy.
We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering.
arXiv Detail & Related papers (2025-03-19T16:07:04Z) - Multi-agent Auto-Bidding with Latent Graph Diffusion Models [10.186029242664931]
This paper proposes a diffusion-based auto-bidding framework that leverages graph representations to model large-scale auction environments.
Empirical evaluations on both real-world and synthetic auction environments demonstrate significant improvements in auto-bidding performance across multiple common metrics, as well as accuracy in forecasting auction outcomes.
arXiv Detail & Related papers (2025-03-04T02:07:24Z) - VICON: A Foundation Model for Multi-Physics Fluid Dynamics via Vision In-Context Operator Networks [21.061630022134203]
In-Context Operator Networks (ICONs) learn operators across different types of PDEs using a few-shot, in-context approach.<n>We propose itVision In-Context Operator Networks (VICON), incorporating a vision transformer architecture that efficiently processes 2D functions through patch-wise operations.
arXiv Detail & Related papers (2024-11-25T03:25:17Z) - Layer-wise Model Merging for Unsupervised Domain Adaptation in Segmentation Tasks [3.776249047528669]
We leverage the abundance of freely trained models to introduce a cost-free approach to model merging.
It aims to maintain the distinctiveness of the task-specific final layers while unifying the initial layers.
This approach ensures parameter consistency across all layers, essential for boosting performance.
arXiv Detail & Related papers (2024-09-24T07:19:30Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Single-Model and Any-Modality for Video Object Tracking [85.83753760853142]
We introduce Un-Track, a Unified Tracker of a single set of parameters for any modality.
To handle any modality, our method learns their common latent space through low-rank factorization and reconstruction techniques.
Our Un-Track achieves +8.1 absolute F-score gain, on the DepthTrack dataset, by introducing only +2.14 (over 21.50) GFLOPs with +6.6M (over 93M) parameters.
arXiv Detail & Related papers (2023-11-27T14:17:41Z) - Global Neural Networks and The Data Scaling Effect in Financial Time Series Forecasting [5.299784478982814]
We demonstrate that the conventional practice of estimating models locally in data-scarce environments may underlie the mixed empirical performance observed in prior work.<n>We employ a dataset comprising over 10,000 global stocks and implement a global estimation strategy that pools information across cross-sections.
arXiv Detail & Related papers (2023-09-05T09:18:45Z) - Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games [66.2085181793014]
We show that a model-free stage-based Q-learning algorithm can enjoy the same optimality in the $H$ dependence as model-based algorithms.
Our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions.
arXiv Detail & Related papers (2023-08-17T08:34:58Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding [47.555870679348416]
We propose a Multi-ecTive Actor-Critics algorithm named MoTiAC for the problem of bidding optimization with various goals.
Unlike previous RL models, the proposed MoTiAC can simultaneously fulfill multi-objective tasks in complicated bidding environments.
arXiv Detail & Related papers (2020-02-18T07:16:39Z) - LAVA NAT: A Non-Autoregressive Translation Model with Look-Around
Decoding and Vocabulary Attention [54.18121922040521]
Non-autoregressive translation (NAT) models generate multiple tokens in one forward pass.
These NAT models often suffer from the multimodality problem, generating duplicated tokens or missing tokens.
We propose two novel methods to address this issue, the Look-Around (LA) strategy and the Vocabulary Attention (VA) mechanism.
arXiv Detail & Related papers (2020-02-08T04:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.