Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport
- URL: http://arxiv.org/abs/2106.12950v2
- Date: Fri, 25 Jun 2021 09:13:25 GMT
- Title: Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport
- Authors: Hengxu Lin, Dong Zhou, Weiqing Liu, Jiang Bian
- Abstract summary: We propose a novel architecture, Temporal Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns.
TRA is a lightweight module that consists of a set independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors.
We show that the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively.
- Score: 8.617532047238461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Successful quantitative investment usually relies on precise predictions of
the future movement of the stock price. Recently, machine learning based
solutions have shown their capacity to give more accurate stock prediction and
become indispensable components in modern quantitative investment systems.
However, the i.i.d. assumption behind existing methods is inconsistent with the
existence of diverse trading patterns in the stock market, which inevitably
limits their ability to achieve better stock prediction performance. In this
paper, we propose a novel architecture, Temporal Routing Adaptor (TRA), to
empower existing stock prediction models with the ability to model multiple
stock trading patterns. Essentially, TRA is a lightweight module that consists
of a set of independent predictors for learning multiple patterns as well as a
router to dispatch samples to different predictors. Nevertheless, the lack of
explicit pattern identifiers makes it quite challenging to train an effective
TRA-based model. To tackle this challenge, we further design a learning
algorithm based on Optimal Transport (OT) to obtain the optimal sample to
predictor assignment and effectively optimize the router with such assignment
through an auxiliary loss term. Experiments on the real-world stock ranking
task show that compared to the state-of-the-art baselines, e.g., Attention LSTM
and Transformer, the proposed method can improve information coefficient (IC)
from 0.053 to 0.059 and 0.051 to 0.056 respectively. Our dataset and code used
in this work are publicly available:
https://github.com/microsoft/qlib/tree/main/examples/benchmarks/TRA.
Related papers
- MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading [6.305870529904885]
We propose MOT, which designs multiple actors with disentangled representation learning to model the different patterns of the market.
Experimental results on real futures market data demonstrate that MOT exhibits excellent profit capabilities while balancing risks.
arXiv Detail & Related papers (2024-06-03T01:42:52Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Feature Selection with Annealing for Forecasting Financial Time Series [2.44755919161855]
This study provides a comprehensive method for forecasting financial time series based on tactical input output feature mapping techniques using machine learning (ML) models.
Experiments indicate that the FSA algorithm increased the performance of ML models, regardless of problem type.
arXiv Detail & Related papers (2023-03-03T21:33:38Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results.
arXiv Detail & Related papers (2022-11-29T04:01:16Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Transforming Model Prediction for Tracking [109.08417327309937]
Transformers capture global relations with little inductive bias, allowing it to learn the prediction of more powerful target models.
We train the proposed tracker end-to-end and validate its performance by conducting comprehensive experiments on multiple tracking datasets.
Our tracker sets a new state of the art on three benchmarks, achieving an AUC of 68.5% on the challenging LaSOT dataset.
arXiv Detail & Related papers (2022-03-21T17:59:40Z) - Predicting Status of Pre and Post M&A Deals Using Machine Learning and
Deep Learning Techniques [0.0]
Risk arbitrage or merger arbitrage is an investment strategy that speculates on the success of M&A deals.
Prediction of the deal status in advance is of great importance for risk arbitrageurs.
We present an ML and DL based methodology for takeover success prediction problem.
arXiv Detail & Related papers (2021-08-05T21:26:45Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.