論文の概要: Federated Learning for Privacy-Preserving Feedforward Control in Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2503.02693v1
- Date: Tue, 04 Mar 2025 15:07:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:13:59.016339
- Title: Federated Learning for Privacy-Preserving Feedforward Control in Multi-Agent Systems
- Title(参考訳): 多エージェントシステムにおけるプライバシ保護フィードフォワード制御のためのフェデレーション学習
- Authors: Jakob Weber, Markus Gurtner, Benedikt Alt, Adrian Trachte, Andreas Kugi,
- Abstract要約: フィードフォワード制御(FF)制御にフェデレーション学習を統合する新しい手法を提案する。
このアプローチにより、FFコントローラのプライバシ保護、通信効率、分散化された継続的改善が可能になる。
自動運転のユースケースにおける本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 2.8582794885632
- License:
- Abstract: Feedforward control (FF) is often combined with feedback control (FB) in many control systems, improving tracking performance, efficiency, and stability. However, designing effective data-driven FF controllers in multi-agent systems requires significant data collection, including transferring private or proprietary data, which raises privacy concerns and incurs high communication costs. Therefore, we propose a novel approach integrating Federated Learning (FL) into FF control to address these challenges. This approach enables privacy-preserving, communication-efficient, and decentralized continuous improvement of FF controllers across multiple agents without sharing personal or proprietary data. By leveraging FL, each agent learns a local, neural FF controller using its data and contributes only model updates to a global aggregation process, ensuring data privacy and scalability. We demonstrate the effectiveness of our method in an autonomous driving use case. Therein, vehicles equipped with a trajectory-tracking feedback controller are enhanced by FL-based neural FF control. Simulations highlight significant improvements in tracking performance compared to pure FB control, analogous to model-based FF control. We achieve comparable tracking performance without exchanging private vehicle-specific data compared to a centralized neural FF control. Our results underscore the potential of FL-based neural FF control to enable privacy-preserving learning in multi-agent control systems, paving the way for scalable and efficient autonomous systems applications.
- Abstract(参考訳): フィードフォワード制御(FF)は、多くの制御システムにおいてフィードバック制御(FB)と組み合わせられ、性能、効率、安定性が向上する。
しかし、マルチエージェントシステムで効果的なデータ駆動型FFコントローラを設計するには、プライバシの懸念を高め、通信コストを高くするプライベートまたはプロプライエタリなデータの転送を含む、重要なデータ収集が必要である。
そこで本研究では,これらの課題に対処するために,フェデレートラーニング(FL)をFF制御に統合する手法を提案する。
このアプローチは、個人やプロプライエタリなデータを共有せずに、複数のエージェントにわたるFFコントローラのプライバシ保存、通信効率、分散化された継続的改善を可能にする。
FLを活用することで、各エージェントはそのデータを使用してローカルでニューラルなFFコントローラを学習し、グローバルアグリゲーションプロセスへのモデル更新のみに寄与し、データのプライバシとスケーラビリティを確保する。
自動運転のユースケースにおける本手法の有効性を実証する。
これにより、FLベースのニューラルFF制御により軌道追従フィードバックコントローラを備えた車両が強化される。
モデルベースFF制御に類似した純粋なFB制御と比較して,トラッキング性能が大幅に向上した。
集中型ニューラルFF制御と比較して、プライベートな車両固有のデータを交換することなく、追跡性能を同等に向上する。
この結果から,マルチエージェント制御システムにおけるプライバシ保護学習を実現するためのFLベースのニューラルFF制御の可能性を明らかにし,スケーラブルで効率的な自律システムアプリケーションへの道を開いた。
関連論文リスト
- Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework [19.381425127772054]
Federated Learning(FL)は、エッジデバイスがローカルなトレーニングデータを維持することができる分散機械学習フレームワークである。
本稿では,分散化された動的電力制御により差分プライバシ(DP)を改善するOTA-FLの無線物理層(PHY)設計を提案する。
この適応は、異なる学習アルゴリズム間で設計の柔軟性と有効性を示しながら、プライバシに強く重点を置いています。
論文 参考訳(メタデータ) (2024-12-05T18:27:09Z) - Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Combining Federated Learning and Control: A Survey [2.8582794885632]
この調査は、(非線形)制御アプリケーションにおける適応性、スケーラビリティ、一般化、プライバシを高めるために、フェデレートラーニング(FL)とコントロールを組み合わせる概要を提供する。
FLは、データプライバシを保持しながら、分散デバイス間の協調学習を可能にする、モデルトレーニングに対する分散アプローチを提供する。
論文 参考訳(メタデータ) (2024-07-12T14:29:17Z) - A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
本稿では,PIDコントローラの代替として,集中型深層Q-network(DQN)コントローラを用いた調査と評価を行う。
我々の主な焦点は、この遷移を水中物体追跡の特定のケースで説明することに集中している。
本実験は,Unityをベースとしたシミュレータで実施し,分離したPIDコントローラ上での集中型RLエージェントの有効性を検証した。
論文 参考訳(メタデータ) (2024-01-29T23:14:15Z) - Differentially Private Over-the-Air Federated Learning Over MIMO Fading
Channels [24.534729104570417]
フェデレートラーニング(FL)は、エッジデバイスが機械学習モデルを協調的にトレーニングすることを可能にする。
オーバー・ザ・エアのモデルアグリゲーションは通信効率を向上させるが、無線ネットワーク上のエッジサーバにモデルをアップロードすると、プライバシのリスクが生じる可能性がある。
FLモデルとマルチアンテナサーバとの通信がプライバシー漏洩を増幅することを示す。
論文 参考訳(メタデータ) (2023-06-19T14:44:34Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - FLaPS: Federated Learning and Privately Scaling [3.618133010429131]
フェデレートラーニング(Federated Learning, FL)とは、データを収集するデバイスにモデルを転送する分散学習プロセスである。
FLaPS(Federated Learning and Privately Scaling)アーキテクチャは,システムのセキュリティとプライバシだけでなく,スケーラビリティも向上する。
論文 参考訳(メタデータ) (2020-09-13T14:20:17Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。