Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots
- URL: http://arxiv.org/abs/2503.02752v1
- Date: Tue, 04 Mar 2025 16:19:06 GMT
- Title: Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots
- Authors: Shuang Chen, Yifeng He, Barry Lennox, Farshad Arvin, Amir Atapour-Abarghouei,
- Abstract summary: monitoring and exploration of extreme environments, such as underwater storage facilities, is costly, labor-intensive and hazardous.<n>We propose a novel approach that integrates a multi-temporal deep learning network for coordinate prediction, and image reassembly.<n>Results demonstrate very high coordinate prediction accuracy and plausible image assembly, indicating the real-world applicability of our approach.
- Score: 8.38975683806005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term monitoring and exploration of extreme environments, such as underwater storage facilities, is costly, labor-intensive, and hazardous. Automating this process with low-cost, collaborative robots can greatly improve efficiency. These robots capture images from different positions, which must be processed simultaneously to create a spatio-temporal model of the facility. In this paper, we propose a novel approach that integrates data simulation, a multi-modal deep learning network for coordinate prediction, and image reassembly to address the challenges posed by environmental disturbances causing drift and rotation in the robots' positions and orientations. Our approach enhances the precision of alignment in noisy environments by integrating visual information from snapshots, global positional context from masks, and noisy coordinates. We validate our method through extensive experiments using synthetic data that simulate real-world robotic operations in underwater settings. The results demonstrate very high coordinate prediction accuracy and plausible image assembly, indicating the real-world applicability of our approach. The assembled images provide clear and coherent views of the underwater environment for effective monitoring and inspection, showcasing the potential for broader use in extreme settings, further contributing to improved safety, efficiency, and cost reduction in hazardous field monitoring. Code is available on https://github.com/ChrisChen1023/Micro-Robot-Swarm.
Related papers
- Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.
Previous works have introduced methods to adapt to turbidity and backscattering.
We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration [0.26999000177990923]
Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments.
We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain.
A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima.
arXiv Detail & Related papers (2025-03-28T16:34:29Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.
This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Stonefish: Supporting Machine Learning Research in Marine Robotics [5.021710505685786]
This paper highlights recent enhancements to the Stonefish simulator, an open-source platform supporting development and testing of marine robotics solutions.<n>Key updates include a suite of additional sensors, as well as, visual light communication, support for tethered operations, improved thruster modelling, more flexible hydrodynamics, and enhanced sonar accuracy.
arXiv Detail & Related papers (2025-02-17T15:13:41Z) - Towards Real-Time 2D Mapping: Harnessing Drones, AI, and Computer Vision for Advanced Insights [0.0]
This paper presents an advanced mapping system that combines drone imagery with machine learning and computer vision to overcome challenges in speed, accuracy, and adaptability across diverse terrains.<n>The system produces seamless, high-resolution maps with minimal latency, offering strategic advantages in defense operations.
arXiv Detail & Related papers (2024-12-28T16:47:18Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics.
We introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras.
We propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously.
arXiv Detail & Related papers (2022-10-04T17:49:23Z) - Robot Active Neural Sensing and Planning in Unknown Cluttered
Environments [0.0]
Active sensing and planning in unknown, cluttered environments is an open challenge for robots intending to provide home service, search and rescue, narrow-passage inspection, and medical assistance.
We present the active neural sensing approach that generates the kinematically feasible viewpoint sequences for the robot manipulator with an in-hand camera to gather the minimum number of observations needed to reconstruct the underlying environment.
Our framework actively collects the visual RGBD observations, aggregates them into scene representation, and performs object shape inference to avoid unnecessary robot interactions with the environment.
arXiv Detail & Related papers (2022-08-23T16:56:54Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains.
Our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
arXiv Detail & Related papers (2022-07-13T16:40:02Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Learning a State Representation and Navigation in Cluttered and Dynamic
Environments [6.909283975004628]
We present a learning-based pipeline to realise local navigation with a quadrupedal robot in cluttered environments.
The robot is able to safely locomote to a target location based on frames from a depth camera without any explicit mapping of the environment.
We show that our system can handle noisy depth images, avoid dynamic obstacles unseen during training, and is endowed with local spatial awareness.
arXiv Detail & Related papers (2021-03-07T13:19:06Z) - Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband [1.6799377888527687]
Moving obstacles and non-line-of-sight occurrences can generate noisy and unreliable signals.
We show how a power-efficient point-to-point local planner, learnt with deep reinforcement learning (RL), can constitute a robust and resilient to noise short-range guidance system complete solution.
Our results show that the computational efficient end-to-end policy learnt in plain simulation, can provide a robust, scalable and at-the-edge low-cost navigation system solution.
arXiv Detail & Related papers (2020-11-18T12:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.