Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration
- URL: http://arxiv.org/abs/2503.22588v1
- Date: Fri, 28 Mar 2025 16:34:29 GMT
- Title: Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration
- Authors: Heiko Renz, Maximilian Krämer, Frank Hoffmann, Torsten Bertram,
- Abstract summary: Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments.<n>We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain.<n>A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima.
- Score: 0.26999000177990923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
Related papers
- Synthetica: Large Scale Synthetic Data for Robot Perception [21.415878105900187]
We present Synthetica, a method for large-scale synthetic data generation for training robust state estimators.
This paper focuses on the task of object detection, an important problem which can serve as the front-end for most state estimation problems.
We leverage data from a ray-tracing, generating 2.7 million images, to train highly accurate real-time detection transformers.
We demonstrate state-of-the-art performance on the task of object detection while having detectors that run at 50-100Hz which is 9 times faster than the prior SOTA.
arXiv Detail & Related papers (2024-10-28T15:50:56Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
Key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations.
We propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments.
arXiv Detail & Related papers (2024-02-07T14:24:41Z) - Learning to View: Decision Transformers for Active Object Detection [18.211691238072245]
In most robotic systems, perception is typically independent of motion planning.
We use reinforcement learning (RL) methods to control the robot in order to obtain images that maximize the detection quality.
We evaluate the performance of proposed method on an interactive dataset collected from an indoor scenario simulator.
arXiv Detail & Related papers (2023-01-23T17:00:48Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
We propose a new approach for informative path planning based on deep reinforcement learning (RL)
Our method combines Monte Carlo tree search with an offline-learned neural network predicting informative sensing actions.
By deploying the trained network during a mission, our method enables sample-efficient online replanning on physical platforms with limited computational resources.
arXiv Detail & Related papers (2021-09-28T09:00:55Z) - Hierarchical Object-to-Zone Graph for Object Navigation [43.558927774552295]
In the unseen environment, when the target object is not in egocentric view, the agent may not be able to make wise decisions.
We propose a hierarchical object-to-zone (HOZ) graph to guide the agent in a coarse-to-fine manner.
Online-learning mechanism is also proposed to update HOZ according to the real-time observation in new environments.
arXiv Detail & Related papers (2021-09-05T13:02:17Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.