Prime Convolutional Model: Breaking the Ground for Theoretical Explainability
- URL: http://arxiv.org/abs/2503.02773v1
- Date: Tue, 04 Mar 2025 16:42:46 GMT
- Title: Prime Convolutional Model: Breaking the Ground for Theoretical Explainability
- Authors: Francesco Panelli, Doaa Almhaithawi, Tania Cerquitelli, Alessandro Bellini,
- Abstract summary: We propose a new theoretical approach to Explainable AI.<n>We apply the method to a case study created in a controlled environment.<n>We show that the different behaviors of p-Conv can be modeled mathematically in terms of $m$ and $B$.
- Score: 45.07003937279752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a new theoretical approach to Explainable AI. Following the Scientific Method, this approach consists in formulating on the basis of empirical evidence, a mathematical model to explain and predict the behaviors of Neural Networks. We apply the method to a case study created in a controlled environment, which we call Prime Convolutional Model (p-Conv for short). p-Conv operates on a dataset consisting of the first one million natural numbers and is trained to identify the congruence classes modulo a given integer $m$. Its architecture uses a convolutional-type neural network that contextually processes a sequence of $B$ consecutive numbers to each input. We take an empirical approach and exploit p-Conv to identify the congruence classes of numbers in a validation set using different values for $m$ and $B$. The results show that the different behaviors of p-Conv (i.e., whether it can perform the task or not) can be modeled mathematically in terms of $m$ and $B$. The inferred mathematical model reveals interesting patterns able to explain when and why p-Conv succeeds in performing task and, if not, which error pattern it follows.
Related papers
- On Computational Limits and Provably Efficient Criteria of Visual Autoregressive Models: A Fine-Grained Complexity Analysis [22.641550077885686]
We analyze the computational limits and efficiency criteria of Visual Autoregressive ($mathsf/$) Models.<n>We prove that assuming the Strong Exponential Time Hypothesis ($mathsfSETH$) from fine-grained complexity theory, a sub-quartic time algorithm for $mathsf/$ models is impossible.<n>Our technique will shed light on advancing scalable and efficient image generation in $mathsf/$ frameworks.
arXiv Detail & Related papers (2025-01-08T09:34:15Z) - Graph Stochastic Neural Process for Inductive Few-shot Knowledge Graph Completion [63.68647582680998]
We focus on a task called inductive few-shot knowledge graph completion (I-FKGC)
Inspired by the idea of inductive reasoning, we cast I-FKGC as an inductive reasoning problem.
We present a neural process-based hypothesis extractor that models the joint distribution of hypothesis, from which we can sample a hypothesis for predictions.
In the second module, based on the hypothesis, we propose a graph attention-based predictor to test if the triple in the query set aligns with the extracted hypothesis.
arXiv Detail & Related papers (2024-08-03T13:37:40Z) - A Feedforward Unitary Equivariant Neural Network [3.6220250022337335]
We devise a new type of feedforward neural network.
It is equivariant with respect to the unitary group $U(n)$.
The input and output can be vectors in $mathbbCn$ with arbitrary dimension $n$.
arXiv Detail & Related papers (2022-08-25T15:05:02Z) - Neural Implicit Manifold Learning for Topology-Aware Density Estimation [15.878635603835063]
Current generative models learn $mathcalM$ by mapping an $m$-dimensional latent variable through a neural network.
We show that our model can learn manifold-supported distributions with complex topologies more accurately than pushforward models.
arXiv Detail & Related papers (2022-06-22T18:00:00Z) - Neural Unification for Logic Reasoning over Natural Language [0.28675177318965034]
Automated Theorem Proving deals with the development of computer programs being able to show that some conjectures (queries) are a logical consequence of a set of axioms (facts and rules)
Recent approaches have proposed transformer-based architectures for deriving conjectures given axioms expressed in natural language (English)
In this work we propose a new architecture, namely the Neural Unifier, which achieves state-of-the-art results in term of generalisation.
arXiv Detail & Related papers (2021-09-17T10:48:39Z) - Thought Flow Nets: From Single Predictions to Trains of Model Thought [39.619001911390804]
When humans solve complex problems, they rarely come up with a decision right-away.
Instead, they start with an intuitive decision reflecting upon it, spot mistakes, resolve contradictions and jump between different hypotheses.
arXiv Detail & Related papers (2021-07-26T13:56:37Z) - Improving Robustness and Generality of NLP Models Using Disentangled
Representations [62.08794500431367]
Supervised neural networks first map an input $x$ to a single representation $z$, and then map $z$ to the output label $y$.
We present methods to improve robustness and generality of NLP models from the standpoint of disentangled representation learning.
We show that models trained with the proposed criteria provide better robustness and domain adaptation ability in a wide range of supervised learning tasks.
arXiv Detail & Related papers (2020-09-21T02:48:46Z) - Evaluating Explainable AI: Which Algorithmic Explanations Help Users
Predict Model Behavior? [97.77183117452235]
We carry out human subject tests to isolate the effect of algorithmic explanations on model interpretability.
Clear evidence of method effectiveness is found in very few cases.
Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability.
arXiv Detail & Related papers (2020-05-04T20:35:17Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Neural Bayes: A Generic Parameterization Method for Unsupervised
Representation Learning [175.34232468746245]
We introduce a parameterization method called Neural Bayes.
It allows computing statistical quantities that are in general difficult to compute.
We show two independent use cases for this parameterization.
arXiv Detail & Related papers (2020-02-20T22:28:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.