論文の概要: Implicit Bias in LLMs: A Survey
- arxiv url: http://arxiv.org/abs/2503.02776v1
- Date: Tue, 04 Mar 2025 16:49:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:25:00.827931
- Title: Implicit Bias in LLMs: A Survey
- Title(参考訳): LLMにおけるインプシシトバイアス:サーベイ
- Authors: Xinru Lin, Luyang Li,
- Abstract要約: 本稿では,大規模言語モデルにおける暗黙バイアスに関する既存の文献を包括的にレビューする。
まず、心理学における暗黙の偏見に関連する重要な概念、理論、方法を紹介する。
検出方法は,単語関連,タスク指向テキスト生成,意思決定の3つの主要なアプローチに分類する。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: Due to the implement of guardrails by developers, Large language models (LLMs) have demonstrated exceptional performance in explicit bias tests. However, bias in LLMs may occur not only explicitly, but also implicitly, much like humans who consciously strive for impartiality yet still harbor implicit bias. The unconscious and automatic nature of implicit bias makes it particularly challenging to study. This paper provides a comprehensive review of the existing literature on implicit bias in LLMs. We begin by introducing key concepts, theories and methods related to implicit bias in psychology, extending them from humans to LLMs. Drawing on the Implicit Association Test (IAT) and other psychological frameworks, we categorize detection methods into three primary approaches: word association, task-oriented text generation and decision-making. We divide our taxonomy of evaluation metrics for implicit bias into two categories: single-value-based metrics and comparison-value-based metrics. We classify datasets into two types: sentences with masked tokens and complete sentences, incorporating datasets from various domains to reflect the broad application of LLMs. Although research on mitigating implicit bias in LLMs is still limited, we summarize existing efforts and offer insights on future challenges. We aim for this work to serve as a clear guide for researchers and inspire innovative ideas to advance exploration in this task.
- Abstract(参考訳): 開発者によるガードレールの実装により、大規模言語モデル(LLM)は明示的なバイアステストにおいて例外的なパフォーマンスを示している。
しかし、LSMの偏見は明示的に起こるだけでなく、暗黙的に起こるかもしれない。
暗黙のバイアスの無意識と自動的な性質は、特に研究を困難にしている。
本稿では,LLMにおける暗黙バイアスに関する既存の文献を包括的にレビューする。
まず、心理学における暗黙のバイアスに関連する重要な概念、理論、方法を導入し、それらを人間からLLMに拡張することから始めます。
インプリシット・アソシエーション・テスト(IAT)やその他の心理学的枠組みに基づき,検出手法を単語関連,タスク指向テキスト生成,意思決定の3つの主要なアプローチに分類した。
暗黙バイアスのための評価指標の分類を、単値ベースのメトリクスと比較値ベースのメトリクスの2つのカテゴリに分けます。
データセットをマスク付きトークン付き文と完全文の2つのタイプに分類し、LLMの幅広い応用を反映するために、さまざまなドメインからのデータセットを取り入れた。
LLMにおける暗黙のバイアスを軽減する研究はまだ限られているが、既存の取り組みを要約し、今後の課題についての洞察を提供する。
本研究は、研究者の明確なガイドとして機能し、この課題を先導する革新的なアイデアを創出することを目的としている。
関連論文リスト
- Explicit vs. Implicit: Investigating Social Bias in Large Language Models through Self-Reflection [5.800102484016876]
大規模言語モデル(LLM)は、生成されたコンテンツに様々なバイアスとステレオタイプを示すことが示されている。
本稿では, LLMにおける明示的, 暗黙的な偏見を解明するために, 社会心理学理論に基づく体系的枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-04T14:08:52Z) - Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
大規模言語モデル(LLM)は、社会をシミュレートし、多様な社会的タスクを実行するために、多くの研究で採用されている。
LLMは、人為的なデータに曝されるため、社会的偏見に影響を受けやすい。
本研究では,多エージェントLDM相互作用における性バイアスの存在について検討し,これらのバイアスを軽減するための2つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-03T15:28:05Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism [62.571419297164645]
本稿では,分類的シロジズムを解析するための大規模言語モデルの論理的推論能力に関する先行研究を体系的に概説する。
まず、純粋に論理的な観点から分類的シロジズムの可能なバリエーションについて検討する。
次に、既存のデータセットでテストされた基本的な設定(ムードとフィギュア)を調べます。
論文 参考訳(メタデータ) (2024-06-26T21:17:20Z) - Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective [66.34066553400108]
我々は、ある人口層に対する大きな言語モデルの暗黙の偏見を厳格に評価する。
心理測定の原則にインスパイアされた我々は,3つの攻撃的アプローチ,すなわち,軽視,軽視,指導を提案する。
提案手法は,LLMの内部バイアスを競合ベースラインよりも効果的に引き出すことができる。
論文 参考訳(メタデータ) (2024-06-20T06:42:08Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Measuring Implicit Bias in Explicitly Unbiased Large Language Models [14.279977138893846]
大規模言語モデル(LLM)は明示的な社会的バイアステストに合格するが、それでも暗黙のバイアスを課す。
我々は、暗黙のバイアスを明らかにするプロンプトベースの方法であるLSM Implicit Biasと、意思決定タスクにおける微妙な差別を検出する戦略であるLSM Decision Biasの2つの新しいバイアス対策を導入する。
これらの指標を用いて,4つの社会カテゴリーにまたがる8つの価値整合モデルにおいて,社会における傾向を反映する広汎なステレオタイプバイアスが発見された。
論文 参考訳(メタデータ) (2024-02-06T15:59:23Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。