論文の概要: Meta-Learning to Explore via Memory Density Feedback
- arxiv url: http://arxiv.org/abs/2503.02831v1
- Date: Tue, 04 Mar 2025 17:55:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:12.959910
- Title: Meta-Learning to Explore via Memory Density Feedback
- Title(参考訳): メモリ密度フィードバックによるメタラーニング
- Authors: Kevin L. McKee,
- Abstract要約: メタ学習を利用した探索アルゴリズムや学習の学習について検討する。
エージェントは、訓練の最盛期にさえ、単一のエピソードで探索の進捗を最大化することを学ぶ。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Exploration algorithms for reinforcement learning typically replace or augment the reward function with an additional ``intrinsic'' reward that trains the agent to seek previously unseen states of the environment. Here, we consider an exploration algorithm that exploits meta-learning, or learning to learn, such that the agent learns to maximize its exploration progress within a single episode, even between epochs of training. The agent learns a policy that aims to minimize the probability density of new observations with respect to all of its memories. In addition, it receives as feedback evaluations of the current observation density and retains that feedback in a recurrent network. By remembering trajectories of density, the agent learns to navigate a complex and growing landscape of familiarity in real-time, allowing it to maximize its exploration progress even in completely novel states of the environment for which its policy has not been trained.
- Abstract(参考訳): 強化学習のための探索アルゴリズムは、通常、報酬関数を「内在的な」報酬で置き換えたり、強化したりする。
本稿では,メタラーニングや学習学習を生かした探索アルゴリズムについて考察し,エージェントが1エピソードで探索の進捗を最大化するために学習する。
エージェントは、すべての記憶に関する新しい観測の確率密度を最小化する政策を学ぶ。
さらに、現在の観測密度のフィードバック評価として受信し、そのフィードバックをリカレントネットワークに保持する。
密度の軌跡を記憶することで、エージェントは複雑で成長する慣れ親しみの風景をリアルタイムでナビゲートすることを学び、その政策が訓練されていない環境の全く新しい状態においても探索の進捗を最大化することができる。
関連論文リスト
- Information Content Exploration [1.7034813545878589]
本稿では,探索行動の体系的定量化と状態カバレッジの促進を図った本質的な報奨を提案する。
情報理論的報酬は,様々なゲームにおいて,効率的な探索や性能向上をもたらすことを示す。
論文 参考訳(メタデータ) (2023-10-10T16:51:32Z) - Successor-Predecessor Intrinsic Exploration [18.440869985362998]
本研究は,内因性報酬を用いた探索に焦点を当て,エージェントが自己生成型内因性報酬を用いて外因性報酬を過渡的に増強する。
本研究では,先進情報と振り返り情報を組み合わせた新たな固有報酬に基づく探索アルゴリズムSPIEを提案する。
本研究は,SPIEが競合する手法よりも少ない報酬とボトルネック状態の環境において,より効率的かつ倫理的に妥当な探索行動をもたらすことを示す。
論文 参考訳(メタデータ) (2023-05-24T16:02:51Z) - Embodied Learning for Lifelong Visual Perception [33.02424587900808]
我々は、新しいモデルを開発し、建物内を航行する様々なエージェントを比較し、生涯の視覚知覚を具体化して研究する。
エージェントの目的は、探索とアクティブな視覚学習を組み合わせたプロセスの最後に、建物全体のオブジェクトやその他のセマンティッククラスを認識することである。
論文 参考訳(メタデータ) (2021-12-28T10:47:13Z) - Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL [91.26538493552817]
本稿では,メタRLの学習経験をリラベルするメタRLのための後向きレバーベリングの定式化について述べる。
提案手法の有効性を,難易度の高い目標達成環境のスイートで実証する。
論文 参考訳(メタデータ) (2021-12-02T00:51:17Z) - Long-Term Exploration in Persistent MDPs [68.8204255655161]
RbExplore (Rollback-Explore) と呼ばれる探査手法を提案する。
本稿では,マルコフ決定過程を永続的に決定する手法であるロールバック・エクスロア (RbExplore) を提案する。
我々は,ペルシャのプリンス・オブ・ペルシャゲームにおいて,報酬やドメイン知識を伴わずに,我々のアルゴリズムを検証した。
論文 参考訳(メタデータ) (2021-09-21T13:47:04Z) - Teaching Agents how to Map: Spatial Reasoning for Multi-Object
Navigation [11.868792440783055]
与えられた位置におけるエージェントと到達目標の間の空間的関係を定量化する指標を推定する学習は、多目的ナビゲーション設定において高い正の影響を及ぼすことを示す。
提案された補助的損失で訓練された文献の学習ベースのエージェントは、マルチオブジェクトナビゲーションチャレンジへの勝利であった。
論文 参考訳(メタデータ) (2021-07-13T12:01:05Z) - Reannealing of Decaying Exploration Based On Heuristic Measure in Deep
Q-Network [82.20059754270302]
本稿では,再熱処理の概念に基づくアルゴリズムを提案し,必要なときにのみ探索を促進することを目的とする。
我々は、訓練を加速し、より良い政策を得る可能性を示す実証的なケーススタディを実施している。
論文 参考訳(メタデータ) (2020-09-29T20:40:00Z) - MetaCURE: Meta Reinforcement Learning with Empowerment-Driven
Exploration [52.48362697163477]
実験により,我々のメタRL法はスパース・リワードタスクにおける最先端のベースラインを著しく上回ることがわかった。
本稿では,活用政策学習とは切り離されたメタRLの探索政策学習問題をモデル化する。
我々は、コンテキスト対応の探索と利用ポリシーを効率よく学習する、新しい非政治メタRLフレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-15T06:56:18Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
そこで我々は,多岐にわたる探索政策を学習し,ハード・サーベイ・ゲームを解決するための強化学習エージェントを提案する。
エージェントの最近の経験に基づいて,k-アネレスト隣人を用いたエピソード記憶に基づく本質的な報酬を構築し,探索政策を訓練する。
自己教師付き逆動力学モデルを用いて、近くのルックアップの埋め込みを訓練し、エージェントが制御できる新しい信号をバイアスする。
論文 参考訳(メタデータ) (2020-02-14T13:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。