論文の概要: AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
- arxiv url: http://arxiv.org/abs/2503.02832v1
- Date: Tue, 04 Mar 2025 17:57:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:20.161292
- Title: AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
- Title(参考訳): AlignDistil: 適応的政策蒸留としてのToken-Level言語モデルアライメント
- Authors: Songming Zhang, Xue Zhang, Tong Zhang, Bojie Hu, Yufeng Chen, Jinan Xu,
- Abstract要約: トークンレベルの報酬最適化のためのRLHF等価蒸留法を提案する。
実験の結果、既存の方法よりもAlignDistilの方が優れていることが示された。
- 参考スコア(独自算出の注目度): 46.72611855060883
- License:
- Abstract: In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.
- Abstract(参考訳): 現代の大規模言語モデル(LLM)では、LLMアライメントは重要であり、人間のフィードバックからの強化学習(RLHF)や直接選好最適化(DPO)といった手法によって達成される。
しかし、LLMアライメントの既存のほとんどのメソッドでは、応答中の全てのトークンはスパース、応答レベルの報酬、または優先アノテーションを使って最適化されている。
トークンレベルの報酬の無知は、不正に高品質のトークンを罰したり、低品質のトークンを奨励したりすることができる。
この問題を解決するために,トークンレベルの報酬最適化のためのRLHF等価蒸留法であるAlignDistilを提案する。
具体的には、DPOが学習した報酬をRLHFの目的に導入し、この目的とトークンレベルの蒸留プロセスの等価性を理論的に証明する。
そこで本研究では、DPOモデルと純報酬モデルとの精度ギャップをさらに埋め、通常のDPOモデルと逆DPOモデルとの対比的なDPO報酬を構築する。
さらに,異なるトークンに対する過度な最適化や過度な最適化を避けるため,トークン適応ロジット外挿機構を設計し,各トークンに対して適切な教師分布を構築する。
実験により,AlignDistilの既存手法よりも優れていることを示すとともに,トークンレベルの分布報酬最適化による高速収束を示す。
関連論文リスト
- T-REG: Preference Optimization with Token-Level Reward Regularization [35.07328450591201]
人間のフィードバックからの強化学習(RLHF)は、大きな言語モデルと人間の価値の整合に不可欠である。
最近の手法ではトークンレベルの報酬を導入してこの制限に対処しようと試みている。
本稿では,トークンレベルの報酬を優先最適化に利用する新しい手法であるトークンレベルの報酬正規化(T-REG)を提案する。
論文 参考訳(メタデータ) (2024-12-03T18:56:07Z) - $α$-DPO: Adaptive Reward Margin is What Direct Preference Optimization Needs [45.46582930202524]
$alpha$-DPOは、大規模言語モデルの適応的優先最適化アルゴリズムである。
ポリシーモデルと参照モデルのバランスを取り、パーソナライズされた報酬マージンを達成する。
さまざまなモデル設定でDPOとSimPOを一貫して上回ります。
論文 参考訳(メタデータ) (2024-10-14T04:29:57Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
本稿では,TIS-DPO と呼ばれるトークン単位の重要度サンプリング DPO の目的について,その報酬に基づいて各トークンに重要度を割り当てる手法を提案する。
TIS-DPOは、無害性、有用性アライメントおよび要約タスクにおいて、様々なベースライン手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-10-06T04:03:00Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
事前訓練された大規模言語モデル(LLM)は、一貫性のある記事を生成するのに優れていますが、そのアウトプットは非現実的、有毒、あるいはユーザの期待に沿わないかもしれません。
現在のアプローチは、モデルアライメントを改善するために、人間のフィードバックによる強化学習を使うことに重点を置いている。
トークンレベルの微粒化によるLCMアライメント向上手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T20:21:45Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Direct Preference Optimization (DPO) は、プライオリティデータに基づいてポリシーを直接訓練する一般的なオフラインアライメント手法である。
我々はこの現象を分析し、蒸留を用いて生成対よりも真の嗜好分布のより良いプロキシを得る。
以上の結果から,このような報酬モデルからの蒸留は,優先アノテーションの分布変化に対するロバスト性の向上につながることが示唆された。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function [50.812404038684505]
我々は,ベルマン方程式を満たす一般逆Q-ラーニングアルゴリズムとして,トークンレベルMDPのDPOを導出できることを示す。
本稿では,マルチターン対話における情報活用,推論,エージェント応用,マルチモデルシステムのエンドツーエンドトレーニングなど,我々の研究の応用について論じる。
論文 参考訳(メタデータ) (2024-04-18T17:37:02Z) - Token-level Direct Preference Optimization [8.249403373337024]
微調整された事前訓練された大規模言語モデルは、それらを人間の価値観や意図と整合させるのに不可欠である。
トークンレベルでポリシーを最適化することにより,LLMと人間の嗜好を一致させる新しいアプローチである,トークンレベルの直接選好最適化(TDPO)を導入する。
論文 参考訳(メタデータ) (2024-04-18T08:49:38Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
我々は報酬モデルが単にスカラー出力よりも多くの情報を含んでいるという事実を活用している。
私たちは、これらの注意重みを使って、完了全体に沿って報酬を再分配します。
経験的に、トレーニングを安定化し、学習速度を加速し、実際は、より良い局所最適性をもたらす可能性があることを示す。
論文 参考訳(メタデータ) (2024-02-01T17:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。