論文の概要: Multiaccuracy and Multicalibration via Proxy Groups
- arxiv url: http://arxiv.org/abs/2503.02870v2
- Date: Wed, 05 Mar 2025 04:41:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 12:09:35.995429
- Title: Multiaccuracy and Multicalibration via Proxy Groups
- Title(参考訳): プロキシ群による多重精度と多重校正
- Authors: Beepul Bharti, Mary Versa Clemens-Sewall, Paul H. Yi, Jeremias Sulam,
- Abstract要約: 本稿では,プロキシ・センシティブな属性を用いて,真のマルチ精度とマルチキャリブレーションの作用可能な上限を導出する方法を示す。
また、マルチ精度とマルチキャリブレーションを満たすためのモデル調整は、真の、しかし未知の、センシティブなグループに対するこれらの違反を著しく軽減することを示した。
- 参考スコア(独自算出の注目度): 6.3194088379570035
- License:
- Abstract: As the use of predictive machine learning algorithms increases in high-stakes decision-making, it is imperative that these algorithms are fair across sensitive groups. Unfortunately, measuring and enforcing fairness in real-world applications can be challenging due to missing or incomplete sensitive group data. Proxy-sensitive attributes have been proposed as a practical and effective solution in these settings, but only for parity-based fairness notions. Knowing how to evaluate and control for fairness with missing sensitive group data for newer and more flexible frameworks, such as multiaccuracy and multicalibration, remains unexplored. In this work, we address this gap by demonstrating that in the absence of sensitive group data, proxy-sensitive attributes can provably be used to derive actionable upper bounds on the true multiaccuracy and multicalibration, providing insights into a model's potential worst-case fairness violations. Additionally, we show that adjusting models to satisfy multiaccuracy and multicalibration across proxy-sensitive attributes can significantly mitigate these violations for the true, but unknown, sensitive groups. Through several experiments on real-world datasets, we illustrate that approximate multiaccuracy and multicalibration can be achieved even when sensitive group information is incomplete or unavailable.
- Abstract(参考訳): 予測機械学習アルゴリズムの使用が高い意思決定において増加するにつれて、これらのアルゴリズムはセンシティブなグループ間で公平であることが不可欠である。
残念なことに、実世界のアプリケーションにおける公正さの測定と強制は、欠落または不完全なグループデータのために困難である。
プロキシ感性属性はこれらの設定において実用的で効果的な解として提案されているが、パリティに基づく公平性の概念のためだけに限られる。
マルチ精度やマルチキャリブレーションといった、より新しく柔軟なフレームワークのための、機密性の高いグループデータの欠如による公平性の評価と制御の方法を知ることは、まだ探索されていない。
本研究は、センシティブなグループデータがない場合、プロキシに敏感な属性が真のマルチ精度とマルチキャリブレーションの作用可能な上限を導出するのに有効であることを示し、モデルの潜在的最悪のフェアネス違反に関する洞察を提供することにより、このギャップに対処する。
さらに、プロキシに敏感な属性間の多重精度と多重校正を満足するモデルを調整することで、真の、未知の、センシティブなグループに対するこれらの違反を著しく軽減できることを示す。
実世界のデータセットに関するいくつかの実験を通して、センシティブなグループ情報が不完全あるいは不利用可能であっても、近似的多重精度と多重校正が達成可能であることを示す。
関連論文リスト
- Provable Optimization for Adversarial Fair Self-supervised Contrastive Learning [49.417414031031264]
本稿では,自己教師型学習環境におけるフェアエンコーダの学習について検討する。
すべてのデータはラベル付けされておらず、そのごく一部だけが機密属性で注釈付けされている。
論文 参考訳(メタデータ) (2024-06-09T08:11:12Z) - Balancing Fairness and Accuracy in Data-Restricted Binary Classification [14.439413517433891]
本稿では,4つの実践シナリオ下での精度と公平性のトレードオフをモデル化する枠組みを提案する。
3つのデータセットの実験では、トレードオフを定量化するためのツールとして提案されたフレームワークの有用性が示されている。
論文 参考訳(メタデータ) (2024-03-12T15:01:27Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - A Sequentially Fair Mechanism for Multiple Sensitive Attributes [0.46040036610482665]
アルゴリズムフェアネスの標準的なユースケースでは、感度変数と対応するスコアの関係を排除することが目標である。
センシティブな特徴の集合にまたがって、段階的に公平性を達成できるシーケンシャルなフレームワークを提案する。
当社のアプローチは、リスクと不公平の間のトレードオフを緩和するフレームワークを包含することで、公平性をシームレスに拡張します。
論文 参考訳(メタデータ) (2023-09-12T22:31:57Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
トレーニングデータや検証データの機密属性にアクセスすることなく、公平な分類器を訓練するフレームワークを提案する。
我々は,これらのプロキシラベルが平均精度制約下での公平性を最大化するために利用できることを理論的,実証的に示す。
論文 参考訳(メタデータ) (2023-02-02T19:45:50Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。