論文の概要: Diagnosis of Patients with Viral, Bacterial, and Non-Pneumonia Based on Chest X-Ray Images Using Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2503.02906v1
- Date: Mon, 03 Mar 2025 16:17:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:56.217067
- Title: Diagnosis of Patients with Viral, Bacterial, and Non-Pneumonia Based on Chest X-Ray Images Using Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークを用いた胸部X線画像によるウイルス・細菌・非肺炎の診断
- Authors: Carlos Arizmendi, Jorge Pinto, Alejandro Arboleda, Hernando González,
- Abstract要約: 肺炎を伴わない患者とウイルス性又は細菌性肺炎の患者に分類するための意思決定支援システムを提案する。
これは、胸部X線(CXR)画像上で、事前訓練された畳み込みニューラルネットワーク(CNN)モデルを用いて転送学習(TL)を実装することで実現される。
肺炎のない患者と、ウイルス性または細菌性肺炎の患者を区別できるモデルを構築するために、一連の実験のパフォーマンスを評価した。
- 参考スコア(独自算出の注目度): 43.175400789778635
- License:
- Abstract: According to the World Health Organization (WHO), pneumonia is a disease that causes a significant number of deaths each year. In response to this issue, the development of a decision support system for the classification of patients into those without pneumonia and those with viral or bacterial pneumonia is proposed. This is achieved by implementing transfer learning (TL) using pre-trained convolutional neural network (CNN) models on chest x-ray (CXR) images. The system is further enhanced by integrating Relief and Chi-square methods as dimensionality reduction techniques, along with support vector machines (SVM) for classification. The performance of a series of experiments was evaluated to build a model capable of distinguishing between patients without pneumonia and those with viral or bacterial pneumonia. The obtained results include an accuracy of 91.02%, precision of 97.73%, recall of 98.03%, and an F1 Score of 97.88% for discriminating between patients without pneumonia and those with pneumonia. In addition, accuracy of 93.66%, precision of 94.26%, recall of 92.66%, and an F1 Score of 93.45% were achieved for discriminating between patients with viral pneumonia and those with bacterial pneumonia.
- Abstract(参考訳): 世界保健機関(WHO)によると、肺炎は毎年かなりの数の死亡を引き起こす病気である。
これに対し, 肺炎を伴わない患者とウイルス性又は細菌性肺炎の患者に分類する意思決定支援システムの開発が提案されている。
これは、胸部X線(CXR)画像上で、事前訓練された畳み込みニューラルネットワーク(CNN)モデルを用いて転送学習(TL)を実装することで実現される。
このシステムはRelief法とChi-square法を次元還元法として統合し,SVM(Support vector machine)を分類する。
肺炎のない患者と、ウイルス性または細菌性肺炎の患者を区別できるモデルを構築するために、一連の実験のパフォーマンスを評価した。
その結果,91.02%の精度,97.73%の精度,98.03%のリコール,97.88%のF1スコアが得られた。
さらに、93.66%の精度、94.26%の精度、92.66%のリコール、93.45%のF1スコアがウイルス性肺炎患者と細菌性肺炎患者を識別するために達成された。
関連論文リスト
- Pneumonia Detection on chest X-ray images Using Ensemble of Deep
Convolutional Neural Networks [7.232767871756102]
本稿では, 胸部X線画像の診断過程を簡略化するために, EL(Ensemble Learning) と呼ばれるコンピュータ支援型肺炎分類法を提案する。
提案手法は,CNNモデルをスクラッチからトレーニングする代わりに,近年,多くの医療タスクのパフォーマンス向上に採用されているCNNモデルである畳み込みニューラルネットワーク(Convolutional Neural Network, CNN)モデルに基づく。
提案したELアプローチは他の最先端手法よりも優れており、テスト段階では93.91%、F1スコアは93.88%の精度が得られる。
論文 参考訳(メタデータ) (2023-12-13T08:28:21Z) - Prediction of Pneumonia and COVID-19 Using Deep Neural Networks [0.0]
胸部X線画像から肺炎を予測する機械学習手法を提案する。
DenseNet121は他のモデルより優れており、精度は99.58%である。
論文 参考訳(メタデータ) (2023-08-20T21:26:37Z) - Accurate and Rapid Diagnosis of COVID-19 Pneumonia with Batch Effect
Removal of Chest CT-Scans and Interpretable Artificial Intelligence [0.0]
我々は、健康な人、新型コロナウイルス患者、他の肺炎疾患患者をCTスキャン画像から識別する、解釈可能な新しいディープニューラルネットワークを設計した。
このモデルは97.75%と98.15%の感度に達し、87%と81.03%の特異性は、病気から健康な人々と他の病気から分離している。
論文 参考訳(メタデータ) (2020-11-23T21:23:55Z) - An ensemble-based approach by fine-tuning the deep transfer learning
models to classify pneumonia from chest X-ray images [0.0]
米国では、主に成人の25万人以上が肺炎と診断され、5万人が死亡している。
よく訓練された放射線科医の肺炎検出を見逃すことは珍しくなく、診断の正確性を改善する必要がある。
InceptionResNet、MobileNetV2、Xception、DenseNet201、ResNet152V2といった最先端のディープラーニングモデルを訓練、微調整して、肺炎を正確に分類しました。
論文 参考訳(メタデータ) (2020-11-11T04:50:06Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
本研究は,胸部X線画像のコンピュータ支援診断手法の開発の可能性を示した。
8,474個の胸部X線画像のデータセットを使用して、CNNベースのCADスキームをトレーニングし、テストする。
検査結果は、3つのクラスを分類する際の総合的精度の94.0%、コビッドウイルスの感染者を検出する際の精度の98.6%を達成している。
論文 参考訳(メタデータ) (2020-06-11T16:45:46Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
短期間のウイルス性肺炎の集団は、SARS、MERS、最近のCOVID-19のような流行やパンデミックのハービンガーである可能性がある。
胸部X線によるウイルス性肺炎の迅速かつ正確な検出は,大規模スクリーニングや流行予防に有用である。
ウイルス性肺炎はしばしば多彩な原因を持ち、X線画像に顕著な視覚的外観を示す。
論文 参考訳(メタデータ) (2020-03-27T11:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。