論文の概要: Monocular Person Localization under Camera Ego-motion
- arxiv url: http://arxiv.org/abs/2503.02916v1
- Date: Tue, 04 Mar 2025 11:07:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:22.414586
- Title: Monocular Person Localization under Camera Ego-motion
- Title(参考訳): カメラ・エゴモーションによる単眼人物位置推定
- Authors: Yu Zhan, Hanjing Ye, Hong Zhang,
- Abstract要約: ポーズ推定問題の一部として、人物のローカライゼーションを考察する。
ヒトを4点モデルで表現することにより、2次元カメラの姿勢と人の3次元位置を共同で推定する。
本手法は人追従システムにさらに実装され,アジャイル四足歩行ロボットに展開される。
- 参考スコア(独自算出の注目度): 5.030357146921396
- License:
- Abstract: Localizing a person from a moving monocular camera is critical for Human-Robot Interaction (HRI). To estimate the 3D human position from a 2D image, existing methods either depend on the geometric assumption of a fixed camera or use a position regression model trained on datasets containing little camera ego-motion. These methods are vulnerable to fierce camera ego-motion, resulting in inaccurate person localization. We consider person localization as a part of a pose estimation problem. By representing a human with a four-point model, our method jointly estimates the 2D camera attitude and the person's 3D location through optimization. Evaluations on both public datasets and real robot experiments demonstrate our method outperforms baselines in person localization accuracy. Our method is further implemented into a person-following system and deployed on an agile quadruped robot.
- Abstract(参考訳): 動く単眼カメラから人物を位置決めすることは、人間-ロボットインタラクション(HRI)にとって重要である。
2次元画像から3次元人間の位置を推定するために、既存の手法は固定カメラの幾何学的仮定に依存するか、カメラのエゴモーションの少ないデータセットに基づいてトレーニングされた位置回帰モデルを使用する。
これらの手法は、激しいカメラのエゴモーションに弱いため、不正確な人物のローカライゼーションをもたらす。
ポーズ推定問題の一部として、人物のローカライゼーションを考察する。
提案手法は,4点モデルで人間を表現することにより,2次元カメラの姿勢と3次元位置を協調的に推定する。
公共データセットと実際のロボット実験の両方による評価により,本手法は個人位置推定精度においてベースラインを上回っていることが示された。
本手法は人追従システムにさらに実装され,アジャイル四足歩行ロボットに展開される。
関連論文リスト
- Reconstructing People, Places, and Cameras [57.81696692335401]
Humans and Structure from Motion (HSfM) は、メカニカルワールド座標系において、複数の人メッシュ、シーンポイント雲、カメラパラメータを共同で再構築する手法である。
以上の結果から,SfMパイプラインに人体データを組み込むことで,カメラのポーズ推定が改善された。
論文 参考訳(メタデータ) (2024-12-23T18:58:34Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
本研究では,ユーザとスポット間のダイアドインタラクションにおける3次元ポーズ推定と予測のための新しいデータセットであるHARPERを紹介する。
キーノーベルティは、ロボットの視点、すなわちロボットのセンサーが捉えたデータに焦点を当てることである。
HARPERの基盤となるシナリオには15のアクションが含まれており、そのうち10つはロボットとユーザの間の物理的接触を含んでいる。
論文 参考訳(メタデータ) (2024-03-21T14:53:50Z) - TRACE: 5D Temporal Regression of Avatars with Dynamic Cameras in 3D
Environments [106.80978555346958]
現在の方法では、地球上の座標で動く人間を確実に推定することはできない。
TRACEは、ダイナミックカメラからグローバル座標における3D人間の共同回収と追跡を行う最初の1段階の手法である。
トラッキングとHPSベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-06-05T13:00:44Z) - External Camera-based Mobile Robot Pose Estimation for Collaborative
Perception with Smart Edge Sensors [22.5939915003931]
本稿では,移動ロボットのポーズを多視点RGB画像を用いた静的カメラネットワークのアロセントリック座標で推定する手法を提案する。
画像はオンラインで、深層ニューラルネットワークによってスマートエッジセンサーでローカルに処理され、ロボットを検出する。
ロボットのポーズを正確に推定すると、その観察は同中心のシーンモデルに融合することができる。
論文 参考訳(メタデータ) (2023-03-07T11:03:33Z) - Scene-Aware 3D Multi-Human Motion Capture from a Single Camera [83.06768487435818]
静止カメラで記録された1枚のRGBビデオから、シーン内の複数の人間の3次元位置を推定し、その身体形状と調音を推定する問題を考察する。
コンピュータビジョンの最近の進歩を,2次元の人体関節,関節角度,正規化不均等マップ,人間のセグメンテーションマスクなど,様々なモダリティのための大規模事前訓練モデルを用いて活用している。
特に,2次元の関節と関節角度を用いた正規化不均等予測から,シーン深度とユニークな人格尺度を推定する。
論文 参考訳(メタデータ) (2023-01-12T18:01:28Z) - 3D Human Pose Estimation in Multi-View Operating Room Videos Using
Differentiable Camera Projections [2.486571221735935]
本稿では,3次元の損失に基づいて2次元CNNをエンドツーエンドにトレーニングすることで,3次元のローカライゼーションを直接最適化することを提案する。
MVORデータセットの動画を用いて、このエンドツーエンドアプローチが2次元空間での最適化より優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T09:00:02Z) - Embodied Scene-aware Human Pose Estimation [25.094152307452]
シーン認識型人間のポーズ推定手法を提案する。
本手法は, シミュレーション環境下でのグローバルな3次元人間のポーズを再現し, 因果関係の1段階である。
論文 参考訳(メタデータ) (2022-06-18T03:50:19Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
HPS(Human POSEitioning System)は、周囲の環境の3Dスキャンで登録された人間の完全な3Dポーズを回復する手法です。
最適化に基づく統合は2つの利点を生かし、結果としてドリフトのないポーズの精度が得られることを示す。
hpsは、人間が外部カメラに直接視線を向けなくてもシーンと対話できるvr/arアプリケーションとして使用できる。
論文 参考訳(メタデータ) (2021-03-31T17:58:31Z) - Exploring Severe Occlusion: Multi-Person 3D Pose Estimation with Gated
Convolution [34.301501457959056]
本稿では,2次元関節を3次元に変換するために,ゲート型畳み込みモジュールを用いた時間回帰ネットワークを提案する。
また, 正規化ポーズを大域軌跡に変換するために, 単純かつ効果的な局所化手法も実施した。
提案手法は,最先端の2D-to-3Dポーズ推定法よりも優れている。
論文 参考訳(メタデータ) (2020-10-31T04:35:24Z) - Perceiving Humans: from Monocular 3D Localization to Social Distancing [93.03056743850141]
本稿では,人間の3次元位置と身体の向きを1つの画像から知覚する,コスト効率の高い視覚ベースの新しい手法を提案する。
我々は,「社会的距離」という概念を,単純な位置に基づくルールとは対照的に,社会的相互作用の一形態として再考することが可能であることを示す。
論文 参考訳(メタデータ) (2020-09-01T10:12:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。