Optimizing open-domain question answering with graph-based retrieval augmented generation
- URL: http://arxiv.org/abs/2503.02922v1
- Date: Tue, 04 Mar 2025 18:47:17 GMT
- Title: Optimizing open-domain question answering with graph-based retrieval augmented generation
- Authors: Joyce Cahoon, Prerna Singh, Nick Litombe, Jonathan Larson, Ha Trinh, Yiwen Zhu, Andreas Mueller, Fotis Psallidas, Carlo Curino,
- Abstract summary: We benchmark various graph-based retrieval-augmented generation (RAG) systems across a broad spectrum of query types.<n>Traditional RAG methods often fall short in handling nuanced, multi-document tasks.<n>We introduce TREX, a novel, cost-effective alternative that combines graph-based synthesis and vector-based retrieval techniques.
- Score: 5.2850605665217865
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work, we benchmark various graph-based retrieval-augmented generation (RAG) systems across a broad spectrum of query types, including OLTP-style (fact-based) and OLAP-style (thematic) queries, to address the complex demands of open-domain question answering (QA). Traditional RAG methods often fall short in handling nuanced, multi-document synthesis tasks. By structuring knowledge as graphs, we can facilitate the retrieval of context that captures greater semantic depth and enhances language model operations. We explore graph-based RAG methodologies and introduce TREX, a novel, cost-effective alternative that combines graph-based and vector-based retrieval techniques. Our benchmarking across four diverse datasets highlights the strengths of different RAG methodologies, demonstrates TREX's ability to handle multiple open-domain QA types, and reveals the limitations of current evaluation methods. In a real-world technical support case study, we demonstrate how TREX solutions can surpass conventional vector-based RAG in efficiently synthesizing data from heterogeneous sources. Our findings underscore the potential of augmenting large language models with advanced retrieval and orchestration capabilities, advancing scalable, graph-based AI solutions.
Related papers
- UniversalRAG: Retrieval-Augmented Generation over Multiple Corpora with Diverse Modalities and Granularities [53.76854299076118]
UniversalRAG is a novel RAG framework designed to retrieve and integrate knowledge from heterogeneous sources with diverse modalities and granularities.
We propose a modality-aware routing mechanism that dynamically identifies the most appropriate modality-specific corpus and performs targeted retrieval within it.
We validate UniversalRAG on 8 benchmarks spanning multiple modalities, showing its superiority over modality-specific and unified baselines.
arXiv Detail & Related papers (2025-04-29T13:18:58Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.
RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.
Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - In-depth Analysis of Graph-based RAG in a Unified Framework [17.941941997783267]
Graph-based Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.
We first summarize a unified framework to incorporate all graph-based RAG methods from a high-level perspective.
We then extensively compare representative graph-based RAG methods over a range of questing-answering (QA) datasets.
arXiv Detail & Related papers (2025-03-06T11:34:49Z) - ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.<n>We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)<n>We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems.<n>RAG architecture is constructed to generate responses from the target document.<n>We introduce QuIM-RAG, a novel approach for the retrieval mechanism in our system.
arXiv Detail & Related papers (2025-01-06T01:07:59Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.<n>We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.<n>We introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.<n>In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Dynamic Few-Shot Learning for Knowledge Graph Question Answering [3.116231004560997]
Large language models present opportunities for innovative Question Answering over Knowledge Graphs (KGQA)
To bridge this gap, solutions have been proposed that rely on fine-tuning or ad-hoc architectures, achieving good results but limited out-of-domain distribution generalization.
In this study, we introduce a novel approach called Dynamic Few-Shot Learning (DFL)
DFL integrates the efficiency of in-context learning and semantic similarity and provides a generally applicable solution for KGQA with state-of-the-art performance.
arXiv Detail & Related papers (2024-07-01T15:59:17Z) - Searching for Best Practices in Retrieval-Augmented Generation [31.438681543849224]
Retrieval-augmented generation (RAG) techniques have proven to be effective in integrating up-to-date information.
Here, we investigate existing RAG approaches and their potential combinations to identify optimal RAG practices.
We suggest several strategies for deploying RAG that balance both performance and efficiency.
arXiv Detail & Related papers (2024-07-01T12:06:34Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.<n>Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.<n>Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - Exploiting Abstract Meaning Representation for Open-Domain Question
Answering [18.027908933572203]
We utilize Abstract Meaning Representation (AMR) graphs to assist the model in understanding complex semantic information.
Results from Natural Questions (NQ) and TriviaQA (TQ) demonstrate that our GST method can significantly improve performance.
arXiv Detail & Related papers (2023-05-26T16:00:16Z) - HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain
Language Model Compression [53.90578309960526]
Large pre-trained language models (PLMs) have shown overwhelming performances compared with traditional neural network methods.
We propose a hierarchical relational knowledge distillation (HRKD) method to capture both hierarchical and domain relational information.
arXiv Detail & Related papers (2021-10-16T11:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.