RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs
- URL: http://arxiv.org/abs/2503.19314v1
- Date: Tue, 25 Mar 2025 03:21:48 GMT
- Title: RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs
- Authors: Yuan Li, Jun Hu, Jiaxin Jiang, Zemin Liu, Bryan Hooi, Bingsheng He,
- Abstract summary: We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
- Score: 58.10503898336799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in graph learning have paved the way for innovative retrieval-augmented generation (RAG) systems that leverage the inherent relational structures in graph data. However, many existing approaches suffer from rigid, fixed settings and significant engineering overhead, limiting their adaptability and scalability. Additionally, the RAG community has largely overlooked the decades of research in the graph database community regarding the efficient retrieval of interesting substructures on large-scale graphs. In this work, we introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline-from efficient graph indexing and dynamic node retrieval to subgraph construction, tokenization, and final generation-into a unified system. RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components, achieving speedups of up to 143x compared to conventional methods. Moreover, its flexible utilities, such as dynamic node filtering, allow for rapid extraction of pertinent subgraphs while reducing token consumption. Our extensive evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems across a range of tasks.
Related papers
- NodeRAG: Structuring Graph-based RAG with Heterogeneous Nodes [25.173078967881803]
Retrieval-augmented generation (RAG) empowers large language models to access external and private corpus.
Current graph-based RAG approaches seldom prioritize the design of graph structures.
Inadequately designed graph not only impede the seamless integration of diverse graph algorithms but also result in workflow inconsistencies.
We propose NodeRAG, a graph-centric framework introducing heterogeneous graph structures.
arXiv Detail & Related papers (2025-04-15T18:24:00Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Graph Structure Refinement with Energy-based Contrastive Learning [56.957793274727514]
We introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation.<n>We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR.<n>ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
arXiv Detail & Related papers (2024-12-20T04:05:09Z) - TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG [3.8704987495086542]
TOBUGraph is a graph-based retrieval framework that first constructs the knowledge graph from unstructured data.
It extracts structured knowledge and diverse relationships among data, going beyond RAG's text-to-text similarity.
We demonstrate TOBUGraph's effectiveness in TOBU, a real-world application in production for personal memory organization and retrieval.
arXiv Detail & Related papers (2024-12-06T22:05:39Z) - LEGO-GraphRAG: Modularizing Graph-based Retrieval-Augmented Generation for Design Space Exploration [17.514586423233872]
We propose LEGO-GraphRAG, a modular framework that enables fine-grained decomposition of the GraphRAG workflow.<n>Our framework facilitates comprehensive empirical studies of GraphRAG on large-scale real-world graphs and diverse query sets.
arXiv Detail & Related papers (2024-11-06T15:32:28Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
Graph learning models have been widely deployed in collaborative filtering (CF) based recommendation systems.
Due to the issue of data sparsity, the graph structure of the original input lacks potential positive preference edges.
We propose an Amplify Graph Learning framework based on Sparsity Completion (called AGL-SC)
arXiv Detail & Related papers (2024-06-27T08:26:20Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
We propose an end-to-end graph learning framework, namely Iterative Deep Graph Learning (IDGL) for jointly and iteratively learning graph structure and graph embedding.
Our experiments show that our proposed IDGL models can consistently outperform or match the state-of-the-art baselines.
arXiv Detail & Related papers (2020-06-21T19:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.