Probing new forces with nuclear-clock quintessometers
- URL: http://arxiv.org/abs/2503.02932v1
- Date: Tue, 04 Mar 2025 19:00:01 GMT
- Title: Probing new forces with nuclear-clock quintessometers
- Authors: Cédric Delaunay, Seung J. Lee, Roee Ozeri, Gilad Perez, Wolfram Ratzinger, Bingrong Yu,
- Abstract summary: Clocks based on nuclear isomer transitions promise exceptional stability and precision.<n>The low transition energy of the Thorium-229 isomer makes it an ideal candidate, as it may be excited by a vacuum-ultraviolet laser and is highly sensitive to subtle interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clocks based on nuclear isomer transitions promise exceptional stability and precision. The low transition energy of the Thorium-229 isomer makes it an ideal candidate, as it may be excited by a vacuum-ultraviolet laser and is highly sensitive to subtle interactions. This enables the development of powerful tools for probing new forces, which we call quintessometers. In this work, we demonstrate the potential of nuclear clocks, particularly solid-state variants, to surpass existing limits on scalar field couplings, exceeding the sensitivity of current fifth-force searches at submicron distances and significantly improving equivalence-principle tests at kilometer scales and beyond. Additionally, we highlight the capability of transportable nuclear clocks to detect scalar interactions at distances beyond $10\,$km, complementing space-based missions.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Atomic interferometer based on optical tweezers [0.0]
We propose and analyze a novel atomic interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms.
The new interferometer allows long probing time, sub micrometer positioning accuracy, and utmost flexibility in shaping of the atomic trajectory.
We discuss two applications well-suited for the unique capabilities of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces between atoms and surfaces.
arXiv Detail & Related papers (2023-08-15T13:42:57Z) - Evidencing the squeezed dark nuclear spin state in lead halide
perovskites [0.0]
Coherent many-body states are highly promising for robust and scalable quantum information processing.
Here, we demonstrate coherent optical manipulation of the nuclear spin ensemble in the lead halide perovskite semiconductor FAPbBr$_3$ (FA=formamidinium)
arXiv Detail & Related papers (2023-01-26T23:11:32Z) - Quantum precision measurement of two-dimensional forces with ${\bf
10^{-28}}$-Newton stability [3.208723972581594]
High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications.
Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology.
arXiv Detail & Related papers (2022-08-10T14:31:53Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Quantum Enhanced Cavity QED Interferometer with Partially Delocalized
Atoms in Lattices [0.0]
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice.
We show that for arrays of $104$ atoms, our protocol can reduce the required averaging time by a factor of $10$ compared to unentangled lattice-based interferometers.
arXiv Detail & Related papers (2021-04-09T05:58:24Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Nuclear clocks for testing fundamental physics [0.0]
The low-energy, long-lived isomer in $229$Th continues to inspire a multidisciplinary community of physicists.
It is possible to build a highly precise nuclear clock based on resonant of the electron shell.
The nuclear clock will open opportunities for highly sensitive tests of fundamental principles of physics.
arXiv Detail & Related papers (2020-12-16T22:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.