A Multimodal Framework for Topic Propagation Classification in Social Networks
- URL: http://arxiv.org/abs/2503.03112v1
- Date: Wed, 05 Mar 2025 02:12:23 GMT
- Title: A Multimodal Framework for Topic Propagation Classification in Social Networks
- Authors: Yuchuan Jiang, Chaolong Jia, Yunyi Qin, Wei Cai, Yongsen Qian,
- Abstract summary: This paper proposes a predictive model for topic dissemination in social networks.<n>We introduce two novel indicators, user relationship breadth and user authority, into the PageRank algorithm.<n>We refine the measurement of user interaction traces with topics, replacing traditional topic view metrics with a more precise communication characteristics measure.
- Score: 2.189314262079322
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid proliferation of the Internet and the widespread adoption of social networks have significantly accelerated information dissemination. However, this transformation has introduced complexities in information capture and processing, posing substantial challenges for researchers and practitioners. Predicting the dissemination of topic-related information within social networks has thus become a critical research focus. This paper proposes a predictive model for topic dissemination in social networks by integrating multidimensional features derived from key dissemination characteristics. Specifically, we introduce two novel indicators, user relationship breadth and user authority, into the PageRank algorithm to quantify user influence more effectively. Additionally, we employ a Text-CNN model for sentiment classification, extracting sentiment features from textual content. Temporal embeddings of nodes are encoded using a Bi-LSTM model to capture temporal dynamics. Furthermore, we refine the measurement of user interaction traces with topics, replacing traditional topic view metrics with a more precise communication characteristics measure. Finally, we integrate the extracted multidimensional features using a Transformer model, significantly enhancing predictive performance. Experimental results demonstrate that our proposed model outperforms traditional machine learning and unimodal deep learning models in terms of FI-Score, AUC, and Recall, validating its effectiveness in predicting topic propagation within social networks.
Related papers
- Towards Realistic Synthetic User-Generated Content: A Scaffolding Approach to Generating Online Discussions [17.96479268328824]
We investigate the feasibility of creating realistic, large-scale synthetic datasets of user-generated content.
We propose a multi-step generation process, predicated on the idea of creating compact representations of discussion threads.
arXiv Detail & Related papers (2024-08-15T18:43:50Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
We conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition.
We show that long-range dependencies in the speech signal are critical for emotion recognition.
Speed/rate augmentation offers the most robust performance gain across models.
arXiv Detail & Related papers (2022-11-09T17:27:03Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
The research was conducted on a Formspring dataset provided in a Kaggle competition on automatic cyberbullying detection.
The study confirmed the effectiveness of Neural Networks in cyberbullying detection and the correlation between classifier performance and Feature Density.
arXiv Detail & Related papers (2022-06-04T03:17:15Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Context Decoupling Augmentation for Weakly Supervised Semantic
Segmentation [53.49821324597837]
Weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recent years.
We present a Context Decoupling Augmentation ( CDA) method to change the inherent context in which the objects appear.
To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-03-02T15:05:09Z) - Multivariate Relations Aggregation Learning in Social Networks [39.576490107740135]
In graph learning tasks of social networks, the identification and utilization of multivariate relationship information are more important.
Existing graph learning methods are based on the neighborhood information diffusion mechanism.
This paper proposes the multivariate relationship aggregation learning (MORE) method, which can effectively capture the multivariate relationship information in the network environment.
arXiv Detail & Related papers (2020-08-09T04:58:38Z) - Feature Importance Estimation with Self-Attention Networks [0.0]
Black-box neural network models are widely used in industry and science, yet are hard to understand and interpret.
Recently, the attention mechanism was introduced, offering insights into the inner workings of neural language models.
This paper explores the use of attention-based neural networks mechanism for estimating feature importance, as means for explaining the models learned from propositional (tabular) data.
arXiv Detail & Related papers (2020-02-11T15:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.