論文の概要: Active operator learning with predictive uncertainty quantification for partial differential equations
- arxiv url: http://arxiv.org/abs/2503.03178v1
- Date: Wed, 05 Mar 2025 04:48:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:00.110031
- Title: Active operator learning with predictive uncertainty quantification for partial differential equations
- Title(参考訳): 偏微分方程式に対する予測不確実性定量化を用いたアクティブ演算子学習
- Authors: Nick Winovich, Mitchell Daneker, Lu Lu, Guang Lin,
- Abstract要約: 本研究では,訓練中に観測されたモデル誤差に校正された予測的不確実性推定を用いたディープオペレータネットワーク(DeepONets)の不確実性定量化手法を開発した。
不確実性フレームワークは、既存のアンサンブルアプローチとは対照的に、単一のネットワークを使用して動作し、トレーニングと推論中に最小限のオーバーヘッドを導入する。
一連の偏微分方程式(PDE)問題に対する不確実性を考慮したモデルの評価を行い、モデル予測が偏りがなく、非歪で、PDEに対する解を正確に再現していることを示す。
- 参考スコア(独自算出の注目度): 6.519088943440059
- License:
- Abstract: In this work, we develop a method for uncertainty quantification in deep operator networks (DeepONets) using predictive uncertainty estimates calibrated to model errors observed during training. The uncertainty framework operates using a single network, in contrast to existing ensemble approaches, and introduces minimal overhead during training and inference. We also introduce an optimized implementation for DeepONet inference (reducing evaluation times by a factor of five) to provide models well-suited for real-time applications. We evaluate the uncertainty-equipped models on a series of partial differential equation (PDE) problems, and show that the model predictions are unbiased, non-skewed, and accurately reproduce solutions to the PDEs. To assess how well the models generalize, we evaluate the network predictions and uncertainty estimates on in-distribution and out-of-distribution test datasets. We find the predictive uncertainties accurately reflect the observed model errors over a range of problems with varying complexity; simpler out-of-distribution examples are assigned low uncertainty estimates, consistent with the observed errors, while more complex out-of-distribution examples are properly assigned higher uncertainties. We also provide a statistical analysis of the predictive uncertainties and verify that these estimates are well-aligned with the observed error distributions at the tail-end of training. Finally, we demonstrate how predictive uncertainties can be used within an active learning framework to yield improvements in accuracy and data-efficiency for outer-loop optimization procedures.
- Abstract(参考訳): 本研究では,深部演算子ネットワーク(DeepONets)における不確実性定量化手法を開発した。
不確実性フレームワークは、既存のアンサンブルアプローチとは対照的に、単一のネットワークを使用して動作し、トレーニングと推論中に最小限のオーバーヘッドを導入する。
また、リアルタイムアプリケーションに適したモデルを提供するために、DeepONet推論(評価時間を5倍に短縮する)の最適化実装も導入する。
一連の偏微分方程式(PDE)問題に対する不確実性を考慮したモデルの評価を行い、モデル予測が偏りがなく、非歪で、PDEに対する解を正確に再現していることを示す。
モデルがいかに一般化するかを評価するため、分布内および分布外テストデータセットに基づいて、ネットワーク予測と不確実性推定を評価する。
より単純なアウト・オブ・ディストリビューションの例は、観測されたエラーと一致して低い不確実性を推定し、より複雑なアウト・オブ・ディストリビューションの例は、適切に高い不確実性を割り当てる。
また,予測の不確かさを統計的に分析し,これらの推定値がトレーニングの終末における観測誤差分布とよく一致していることを確認する。
最後に,外部ループ最適化手法の精度とデータ効率を向上させるために,アクティブラーニングフレームワーク内で予測の不確実性をいかに活用できるかを示す。
関連論文リスト
- Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Trainingは、ニューラル分類器が不確実性を正確に推定する能力を高めることを目的としている。
EUATアプローチは、モデルのトレーニングフェーズ中に、トレーニング例が正しく予測されているか、あるいは正しく予測されているかによって、2つの損失関数を選択的に使用することによって機能する。
画像認識領域における多様なニューラルモデルとデータセットを用いてEUATを評価する。
論文 参考訳(メタデータ) (2024-05-02T11:48:14Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
よく校正されたモデルでは、不確実性推定はモデル誤差と完全に相関する。
本稿では,モデル誤差に整合した品質不確実性推定を導出するための,新しい誤差整合不確実性最適化手法を提案する。
本研究では, 平均変位誤差を1.69%, 4.69%, モデル誤差との不確実性相関を17.22%, 19.13%, ピアソン相関係数で定量化することにより, 平均変位誤差を1.69%, 4.69%改善することを示した。
論文 参考訳(メタデータ) (2022-12-09T12:33:26Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
Errors-in-Variablesの概念がベイズ的深部回帰においてどのように利用できるかを示す。
様々なシミュレートされた実例に沿ったアプローチについて論じる。
論文 参考訳(メタデータ) (2021-05-19T12:37:02Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。