DSPNet: Dual-vision Scene Perception for Robust 3D Question Answering
- URL: http://arxiv.org/abs/2503.03190v2
- Date: Thu, 06 Mar 2025 03:32:56 GMT
- Title: DSPNet: Dual-vision Scene Perception for Robust 3D Question Answering
- Authors: Jingzhou Luo, Yang Liu, Weixing Chen, Zhen Li, Yaowei Wang, Guanbin Li, Liang Lin,
- Abstract summary: 3D Question Answering (3D QA) requires the model to understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation.<n>Existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images.<n>We propose a Dual-vision Scene Perception Network (DSPNet) to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA.
- Score: 106.96097136553105
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D Question Answering (3D QA) requires the model to comprehensively understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation. However, existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images. Moreover, due to the inherent noise in camera poses and complex occlusions, there exists significant feature degradation and reduced feature robustness problems when aligning 3D point cloud with multi-view images. In this paper, we propose a Dual-vision Scene Perception Network (DSPNet), to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA. Our Text-guided Multi-view Fusion (TGMF) module prioritizes image views that closely match the semantic content of the text. To adaptively fuse back-projected multi-view images with point cloud features, we design the Adaptive Dual-vision Perception (ADVP) module, enhancing 3D scene comprehension. Additionally, our Multimodal Context-guided Reasoning (MCGR) module facilitates robust reasoning by integrating contextual information across visual and linguistic modalities. Experimental results on SQA3D and ScanQA datasets demonstrate the superiority of our DSPNet. Codes will be available at https://github.com/LZ-CH/DSPNet.
Related papers
- Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness [73.72335146374543]
We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure.
Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks.
arXiv Detail & Related papers (2025-04-02T16:59:55Z) - IPDN: Image-enhanced Prompt Decoding Network for 3D Referring Expression Segmentation [29.714642487981358]
3D Referring Expression (3D-RES) aims to segment point cloud scenes based on a given expression.<n>Existing 3D-RES approaches face two major challenges: feature ambiguity and intent ambiguity.<n>In this paper, we introduce an Image enhanced Prompt Decoding Network (IPDN) to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2025-01-09T06:20:00Z) - Point Cloud Self-supervised Learning via 3D to Multi-view Masked
Autoencoder [21.73287941143304]
Multi-Modality Masked AutoEncoders (MAE) methods leverage both 2D images and 3D point clouds for pre-training.
We introduce a novel approach employing a 3D to multi-view masked autoencoder to fully harness the multi-modal attributes of 3D point clouds.
Our method outperforms state-of-the-art counterparts by a large margin in a variety of downstream tasks.
arXiv Detail & Related papers (2023-11-17T22:10:03Z) - JM3D & JM3D-LLM: Elevating 3D Understanding with Joint Multi-modal Cues [68.76032126906743]
We introduce JM3D, a comprehensive approach integrating point cloud, text, and image.
Key contributions include the Structured Multimodal Organizer (SMO), enriching vision-language representation with multiple views and hierarchical text.
Our advanced model, JM3D-LLM, marries 3D representation with large language models via efficient fine-tuning.
arXiv Detail & Related papers (2023-10-14T06:13:20Z) - SCA-PVNet: Self-and-Cross Attention Based Aggregation of Point Cloud and
Multi-View for 3D Object Retrieval [8.74845857766369]
Multi-modality 3D object retrieval is rarely developed and analyzed on large-scale datasets.
We propose self-and-cross attention based aggregation of point cloud and multi-view images (SCA-PVNet) for 3D object retrieval.
arXiv Detail & Related papers (2023-07-20T05:46:32Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
Training models to apply common-sense linguistic knowledge and visual concepts from 2D images to 3D scene understanding is a promising direction that researchers have only recently started to explore.
We propose a novel 3D pre-training Vision-Language method, namely Multi-CLIP, that enables a model to learn language-grounded and transferable 3D scene point cloud representations.
arXiv Detail & Related papers (2023-06-04T11:08:53Z) - Multi-view Vision-Prompt Fusion Network: Can 2D Pre-trained Model Boost
3D Point Cloud Data-scarce Learning? [38.06639044139636]
This work proposes a novel Multi-view Vision-Prompt Fusion Network (MvNet) for few-shot 3D point cloud classification.
MvNet achieves new state-of-the-art performance for 3D few-shot point cloud image classification.
arXiv Detail & Related papers (2023-04-20T11:39:41Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
We propose a new architecture, namely Hallucinated Hollow-3D R-CNN, to address the problem of 3D object detection.
In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view.
The 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation.
arXiv Detail & Related papers (2021-07-30T02:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.