論文の概要: Rice Grain Size Measurement using Image Processing
- arxiv url: http://arxiv.org/abs/2503.03214v1
- Date: Wed, 05 Mar 2025 06:16:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:51:20.324187
- Title: Rice Grain Size Measurement using Image Processing
- Title(参考訳): 画像処理による米粒径計測
- Authors: Ankush Tyagi, Dhruv Motwani, Vipul K. Dabhi, Harshadkumar B. Prajapati,
- Abstract要約: 米粒の質は、その大きさと黒さから決定できる。
米粒径を測る従来の手法は手作業による検査である。
本研究では,画像処理に基づくアプローチを提案し,展開した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rice grain quality can be determined from its size and chalkiness. The traditional approach to measure the rice grain size involves manual inspection, which is inefficient and leads to inconsistent results. To address this issue, an image processing based approach is proposed and developed in this research. The approach takes image of rice grains as input and outputs the number of rice grains and size of each rice grain. The different steps, such as extraction of region of interest, segmentation of rice grains, and sub-contours removal, involved in the proposed approach are discussed. The approach was tested on rice grain images captured from different height using mobile phone camera. The obtained results show that the proposed approach successfully detected 95\% of the rice grains and achieved 90\% accuracy for length and width measurement.
- Abstract(参考訳): 米粒の質は、その大きさと黒さから決定できる。
米粒径を測る従来の手法では、手作業による検査は非効率であり、矛盾する結果をもたらす。
そこで本研究では,画像処理に基づくアプローチを提案し,提案手法を開発した。
この手法では、米粒のイメージを入力として、米粒の数と米粒の大きさを出力する。
提案手法に係わる,関心領域の抽出,米粒の分画,サブコントラストの除去など,さまざまなステップについて論じる。
本手法は,携帯電話カメラを用いて異なる高さから得られた米粒画像を用いて検討した。
その結果, 提案手法は米粒の95%を検知し, 長さ, 幅測定の90%の精度を達成できた。
関連論文リスト
- An Overall Real-Time Mechanism for Classification and Quality Evaluation of Rice [1.7034902216513157]
本研究は, 包括的米粒評価のためのリアルタイム評価機構を提案する。
1段階のオブジェクト検出アプローチ、深層畳み込みニューラルネットワーク、従来の機械学習技術を統合する。
提案手法により,イネ品種の同定,粒度評価,粒度評価が可能となった。
論文 参考訳(メタデータ) (2025-02-19T14:24:25Z) - CookingDiffusion: Cooking Procedural Image Generation with Stable Diffusion [58.92430755180394]
textbfCookingDiffusionは,調理工程のリアルな画像を生成する新しい手法である。
これらのプロンプトは、テキストプロンプト、画像プロンプト、マルチモーダルプロンプトを含み、一貫したプロシージャ画像の生成を保証する。
実験結果から, 高品質な調理用プロシージャ画像の生成に優れたモデルが得られた。
論文 参考訳(メタデータ) (2025-01-15T06:58:53Z) - Retrieval Augmented Recipe Generation [96.43285670458803]
本稿では,レシピ生成のための拡張型大規模マルチモーダルモデルを提案する。
既存のデータストアからサプリメントとして、イメージにセマンティックに関連付けられたレシピを検索する。
生成したレシピ候補間の一貫性を計算し、異なる検索レシピを生成のコンテキストとして使用する。
論文 参考訳(メタデータ) (2024-11-13T15:58:50Z) - A novel method for identifying rice seed purity based on hybrid machine learning algorithms [0.0]
穀物産業では、種子の品質を評価する上で重要な要素として、種子の純度の同定が重要である。
本研究では,ハイブリッド機械学習アルゴリズムを用いて,特定の品種のイネ種子の純度を自動的に同定する手法を提案する。
論文 参考訳(メタデータ) (2024-06-09T17:13:25Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Development of a Prototype Application for Rice Disease Detection Using
Convolutional Neural Networks [0.0]
米はフィリピンで1番の主食である。
農家は、稲作全体を害する恐れのあるイネの葉の病原体に慣れていない。
イネの一般的な細菌の葉に対処する必要性は深刻な病気であり、収量が減少し、収穫量も最大75%減少する。
論文 参考訳(メタデータ) (2023-01-13T13:12:40Z) - Vision-Based Defect Classification and Weight Estimation of Rice Kernels [12.747541089354538]
そこで本研究では,イネカーネルの視覚的品質自動推定システムについて,その欠陥の種類に応じて分類し,視点型カーネルの重量比による品質評価を行う。
画像中の各カーネルの相対重量をその面積から測定する新しい指標を定義し,すべてのサンプルに対する各カーネルの相対重量を計算し,米の品質評価の基盤として利用できるようにした。
論文 参考訳(メタデータ) (2022-10-06T03:58:05Z) - Automatic Detection of Rice Disease in Images of Various Leaf Sizes [0.5284812806199193]
そこで我々は,米田写真画像から米病を検出するコンピュータビジョン技術を用いて,その解決策に焦点をあてた。
そこで本研究では,CNNオブジェクト検出と画像タイリングを組み合わせた手法を提案する。
本手法は, 発芽, 発芽, 褐色斑点, 褐色斑点, オレンジ, 赤色ストライプ, 草草性スタントウイルス, ストリーク病など8種類のイネ葉病の4,960枚の画像から評価した。
論文 参考訳(メタデータ) (2022-06-15T07:56:41Z) - Using depth information and colour space variations for improving
outdoor robustness for instance segmentation of cabbage [62.997667081978825]
本研究は, 異なる環境条件下での作物のインスタンスセグメンテーションの改善に焦点をあてる。
深度情報と異なる色空間表現の影響を分析した。
その結果,色情報と組み合わせることでセグメンテーション精度が7.1%向上した。
論文 参考訳(メタデータ) (2021-03-31T09:19:12Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
この研究は、1万3千以上の天体を含む最初の大規模花粉画像データセットを提示する。
本稿では, エアロバイオロジカルサンプリング, 顕微鏡画像取得, 物体検出, セグメンテーション, ラベル付けなど, 採用データ取得のステップに注目した。
論文 参考訳(メタデータ) (2020-07-09T10:33:31Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。